Programming language: Go
License: MIT License
Tags: Machine Learning    
Latest version: v0.7.1

Goptuna alternatives and similar packages

Based on the "Machine Learning" category.
Alternatively, view Goptuna alternatives based on common mentions on social networks and blogs.

Do you think we are missing an alternative of Goptuna or a related project?

Add another 'Machine Learning' Package



Software License GoDoc Go Report Card

Decentralized hyperparameter optimization framework, inspired by Optuna [1]. This library is particularly designed for machine learning, but everything will be able to optimize if you can define the objective function (e.g. Optimizing the number of goroutines of your server and the memory buffer size of the caching systems).

Supported algorithms:

Goptuna supports various state-of-the-art Bayesian optimization, Evolution strategy and Multi-armed bandit algorithms. All algorithms are implemented in pure Go and continuously benchmarked on GitHub Actions.

  • Random search
  • TPE: Tree-structured Parzen Estimators [2]
  • CMA-ES: Covariance Matrix Adaptation Evolution Strategy [3]
  • IPOP-CMA-ES: CMA-ES with increasing population size [4]
  • BIPOP-CMA-ES: BI-population CMA-ES [5]
  • Median Stopping Rule [6]
  • ASHA: Asynchronous Successive Halving Algorithm (Optuna flavored version) [1,7,8]
  • Quasi-monte carlo sampling based on Sobol sequence [10, 11]

Projects using Goptuna:


You can integrate Goptuna in wide variety of Go projects because of its portability of pure Go.

$ go get -u github.com/c-bata/goptuna


Goptuna supports Define-by-Run style API like Optuna. You can dynamically construct the search spaces.

Basic usage

package main

import (


// ① Define an objective function which returns a value you want to minimize.
func objective(trial goptuna.Trial) (float64, error) {
    // ② Define the search space via Suggest APIs.
    x1, _ := trial.SuggestFloat("x1", -10, 10)
    x2, _ := trial.SuggestFloat("x2", -10, 10)
    return math.Pow(x1-2, 2) + math.Pow(x2+5, 2), nil

func main() {
    // ③ Create a study which manages each experiment.
    study, err := goptuna.CreateStudy(
    if err != nil { ... }

    // ④ Evaluate your objective function.
    err = study.Optimize(objective, 100)
    if err != nil { ... }

    // ⑤ Print the best evaluation parameters.
    v, _ := study.GetBestValue()
    p, _ := study.GetBestParams()
    log.Printf("Best value=%f (x1=%f, x2=%f)",
        v, p["x1"].(float64), p["x2"].(float64))

Link: Go Playground

Furthermore, I recommend you to use RDB storage backend for following purposes.

  • Continue from where we stopped in the previous optimizations.
  • Scale studies to tens of workers that connecting to the same RDB storage.
  • Check optimization results via a built-in dashboard.

Built-in Web Dashboard

You can check optimization results by built-in web dashboard.

  • SQLite3: $ goptuna dashboard --storage sqlite:///example.db (See [here](./_examples/simple_rdb/check_sqlite3.sh) for details).
  • MySQL: $ goptuna dashboard --storage mysql://goptuna:[email protected]:3306/yourdb (See [here](./_examples/simple_rdb/check_mysql.sh) for details)
Manage optimization results Interactive live-updating graphs

Advanced Usage

Parallel optimization with multiple goroutine workers

Optimize method of goptuna.Study object is designed as the goroutine safe. So you can easily optimize your objective function using multiple goroutine workers.

package main

import ...

func main() {
    study, _ := goptuna.CreateStudy(...)

    eg, ctx := errgroup.WithContext(context.Background())
    for i := 0; i < 5; i++ {
        eg.Go(func() error {
            return study.Optimize(objective, 100)
    if err := eg.Wait(); err != nil { ... }

[full source code](./_examples/concurrency/main.go)

Distributed optimization using MySQL

There is no complicated setup to use RDB storage backend. First, setup MySQL server like following to share the optimization result.

$ docker pull mysql:8.0
$ docker run \
  -d \
  --rm \
  -p 3306:3306 \
  -e MYSQL_USER=goptuna \
  -e MYSQL_DATABASE=goptuna \
  -e MYSQL_PASSWORD=password \
  --name goptuna-mysql \

Then, create a study object using Goptuna CLI.

$ goptuna create-study --storage mysql://goptuna:password@localhost:3306/yourdb --study yourstudy
$ mysql --host --port 3306 --user goptuna -ppassword -e "SELECT * FROM studies;"
| study_id | study_name | direction |
|        1 | yourstudy  | MINIMIZE  |
1 row in set (0.00 sec)

Finally, run the Goptuna workers which contains following code. You can execute distributed optimization by just executing this script from multiple server instances.

package main

import ...

func main() {
    db, _ := gorm.Open(mysql.Open("goptuna:password@tcp(localhost:3306)/yourdb?parseTime=true"), &gorm.Config{
        Logger: logger.Default.LogMode(logger.Silent),
    storage := rdb.NewStorage(db)
    defer db.Close()

    study, _ := goptuna.LoadStudy(
    _ = study.Optimize(objective, 50)

Full source code is available [here](./_examples/simple_rdb/main.go).

Receive notifications of each trials

You can receive notifications of each trials via channel. It can be used for logging and any notification systems.

package main

import ...

func main() {
    trialchan := make(chan goptuna.FrozenTrial, 8)
    study, _ := goptuna.CreateStudy(

    var wg sync.WaitGroup
    go func() {
        defer wg.Done()
        err = study.Optimize(objective, 100)
    go func() {
        defer wg.Done()
        for t := range trialchan {
            log.Println("trial", t)
    if err != nil { ... }

[full source code](./_examples/trialnotify/main.go)




Blog posts:



This software is licensed under the MIT license, see [LICENSE](./LICENSE) for more information.

*Note that all licence references and agreements mentioned in the Goptuna README section above are relevant to that project's source code only.