nutsdb alternatives and similar packages
Based on the "Database" category.
Alternatively, view nutsdb alternatives based on common mentions on social networks and blogs.
-
tidb
TiDB - the open-source, cloud-native, distributed SQL database designed for modern applications. -
cockroach
CockroachDB — the cloud native, distributed SQL database designed for high availability, effortless scale, and control over data placement. -
TinyGo
Go compiler for small places. Microcontrollers, WebAssembly (WASM/WASI), and command-line tools. Based on LLVM. -
groupcache
groupcache is a caching and cache-filling library, intended as a replacement for memcached in many cases. -
bytebase
The GitHub/GitLab for database DevSecOps. World's most advanced database DevSecOps solution for Developer, Security, DBA and Platform Engineering teams. -
immudb
immudb - immutable database based on zero trust, SQL/Key-Value/Document model, tamperproof, data change history -
go-cache
An in-memory key:value store/cache (similar to Memcached) library for Go, suitable for single-machine applications. -
buntdb
BuntDB is an embeddable, in-memory key/value database for Go with custom indexing and geospatial support -
pREST
PostgreSQL ➕ REST, low-code, simplify and accelerate development, ⚡ instant, realtime, high-performance on any Postgres application, existing or new -
xo
Command line tool to generate idiomatic Go code for SQL databases supporting PostgreSQL, MySQL, SQLite, Oracle, and Microsoft SQL Server -
lotusdb
Most advanced key-value database written in Go, extremely fast, compatible with LSM tree and B+ tree. -
gocraft/dbr (database records)
Additions to Go's database/sql for super fast performance and convenience.
CodeRabbit: AI Code Reviews for Developers
Do you think we are missing an alternative of nutsdb or a related project?
Popular Comparisons
README
NutsDB
English | 简体中文
NutsDB is a simple, fast, embeddable and persistent key/value store written in pure Go.
It supports fully serializable transactions and many data structures such as list、set、sorted set. All operations happen inside a Tx. Tx represents a transaction, which can be read-only or read-write. Read-only transactions can read values for a given bucket and a given key or iterate over a set of key-value pairs. Read-write transactions can read, update and delete keys from the DB.
Announcement
- v0.10.0 release, see for details: https://github.com/nutsdb/nutsdb/issues/193
- v0.9.0 release, see for details: https://github.com/nutsdb/nutsdb/issues/167
📢 Note: Starting from v0.9.0, defaultSegmentSize in DefaultOptions has been adjusted from 8MB to 256MB. The original value is the default value, which needs to be manually changed to 8MB, otherwise the original data will not be parsed. The reason for the size adjustment here is that there is a cache for file descriptors starting from v0.9.0 (detail see https://github.com/nutsdb/nutsdb/pull/164 ), so users need to look at the number of fds they use on the server, which can be set manually. If you have any questions, you can open an issue.
Architecture
Welcome contributions to NutsDB.
Table of Contents
- Getting Started
- Installing
- Opening a database
- Options
- Transactions
- Using buckets
- Using key/value pairs
- Using TTL(Time To Live)
- Iterating over keys
- Merge Operation
- Database backup
- Using in memory mode
- Using other data structures
- List
- RPush
- LPush
- LPop
- LPeek
- RPop
- RPeek
- LRange
- LRem
- LRemByIndex
- LSet
- Ltrim
- LSize
- LKeys
- Set
- SAdd
- SAreMembers
- SCard
- SDiffByOneBucket
- SDiffByTwoBuckets
- SHasKey
- SIsMember
- SMembers
- SMoveByOneBucket
- SMoveByTwoBuckets
- SPop
- SRem
- SUnionByOneBucket
- SUnionByTwoBuckets
- SKeys
- Sorted Set
- ZAdd
- ZCard
- ZCount
- ZGetByKey
- ZMembers
- ZPeekMax
- ZPeekMin
- ZPopMax
- ZPopMin
- ZRangeByRank
- ZRangeByScore
- ZRank
- ZKeys
- ZRevRank
- ZRem
- ZRemRangeByRank
- ZScore
- Comparison with other databases
- Benchmarks
- Caveats & Limitations
- Contact
- Contributing
- Acknowledgements
- License
Getting Started
Installing
To start using NutsDB, first needs Go installed (version 1.11+ is required). and run go get:
go get -u github.com/xujiajun/nutsdb
Opening a database
To open your database, use the nutsdb.Open() function,with the appropriate options.The Dir
, EntryIdxMode
and SegmentSize
options are must be specified by the client. About options see here for detail.
package main
import (
"log"
"github.com/xujiajun/nutsdb"
)
func main() {
// Open the database located in the /tmp/nutsdb directory.
// It will be created if it doesn't exist.
db, err := nutsdb.Open(
nutsdb.DefaultOptions,
nutsdb.WithDir("/tmp/nutsdb"),
)
if err != nil {
log.Fatal(err)
}
defer db.Close()
...
}
Options
- Dir string
Dir
represents Open the database located in which dir.
- EntryIdxMode EntryIdxMode
EntryIdxMode
represents using which mode to index the entries. EntryIdxMode
includes three options: HintKeyValAndRAMIdxMode
,HintKeyAndRAMIdxMode
and HintBPTSparseIdxMode
. HintKeyValAndRAMIdxMode
represents ram index (key and value) mode, HintKeyAndRAMIdxMode
represents ram index (only key) mode and HintBPTSparseIdxMode
represents b+ tree sparse index mode.
- RWMode RWMode
RWMode
represents the read and write mode. RWMode
includes two options: FileIO
and MMap
.
FileIO represents the read and write mode using standard I/O. And MMap represents the read and write mode using mmap.
- SegmentSize int64
NutsDB will truncate data file if the active file is larger than SegmentSize
.
Current version default SegmentSize
is 8MB,but you can custom it.
The defaultSegmentSize becomes 256MB when the version is greater than 0.8.0.
Once set, it cannot be changed. see caveats--limitations for detail.
- NodeNum int64
NodeNum
represents the node number.Default NodeNum is 1. NodeNum
range [1,1023] .
- SyncEnable bool
SyncEnable
represents if call Sync() function.
if SyncEnable
is false, high write performance but potential data loss likely.
if SyncEnable
is true, slower but persistent.
- StartFileLoadingMode RWMode
StartFileLoadingMode
represents when open a database which RWMode to load files.
Default Options
Recommend to use the DefaultOptions
. Unless you know what you're doing.
var DefaultOptions = Options{
EntryIdxMode: HintKeyValAndRAMIdxMode,
SegmentSize: defaultSegmentSize,
NodeNum: 1,
RWMode: FileIO,
SyncEnable: true,
StartFileLoadingMode: MMap,
}
Transactions
NutsDB allows only one read-write transaction at a time but allows as many read-only transactions as you want at a time. Each transaction has a consistent view of the data as it existed when the transaction started.
When a transaction fails, it will roll back, and revert all changes that occurred to the database during that transaction.
If the option SyncEnable
is set to true, when a read/write transaction succeeds, all changes are persisted to disk.
Creating transaction from the DB
is thread safe.
Read-write transactions
err := db.Update(
func(tx *nutsdb.Tx) error {
...
return nil
})
Read-only transactions
err := db.View(
func(tx *nutsdb.Tx) error {
...
return nil
})
Managing transactions manually
The DB.View()
and DB.Update()
functions are wrappers around the DB.Begin()
function. These helper functions will start the transaction, execute a function, and then safely close your transaction if an error is returned. This is the recommended way to use NutsDB transactions.
However, sometimes you may want to manually start and end your transactions. You can use the DB.Begin() function directly but please be sure to close the transaction.
// Start a write transaction.
tx, err := db.Begin(true)
if err != nil {
return err
}
bucket := "bucket1"
key := []byte("foo")
val := []byte("bar")
// Use the transaction.
if err = tx.Put(bucket, key, val, nutsdb.Persistent); err != nil {
// Rollback the transaction.
tx.Rollback()
} else {
// Commit the transaction and check for error.
if err = tx.Commit(); err != nil {
tx.Rollback()
return err
}
}
Using buckets
Buckets are collections of key/value pairs within the database. All keys in a bucket must be unique. Bucket can be interpreted as a table or namespace. So you can store the same key in different bucket.
key := []byte("key001")
val := []byte("val001")
bucket001 := "bucket001"
if err := db.Update(
func(tx *nutsdb.Tx) error {
if err := tx.Put(bucket001, key, val, 0); err != nil {
return err
}
return nil
}); err != nil {
log.Fatal(err)
}
bucket002 := "bucket002"
if err := db.Update(
func(tx *nutsdb.Tx) error {
if err := tx.Put(bucket002, key, val, 0); err != nil {
return err
}
return nil
}); err != nil {
log.Fatal(err)
}
Also, this bucket is related to the data structure you use. Different data index structures that use the same bucket are also different. For example, you define a bucket named bucket_foo
, so you need to use the list
data structure, use tx.RPush
to add data, you must query or retrieve from this bucket_foo data structure, use tx.RPop
, tx.LRange
, etc. You cannot use tx.Get
(same index type as tx.GetAll
, tx.Put
, tx.Delete
, tx.RangeScan
, etc.) to read the data in this bucket_foo
, because the index structure is different. Other data structures such as Set
, Sorted Set
are the same.
Iterate buckets
IterateBuckets iterates over all the buckets that match the pattern. IterateBuckets function has three parameters: ds
, pattern
and function f
.
The current version of the Iterate Buckets method supports the following EntryId Modes:
HintKeyValAndRAMIdxMode
:represents ram index (key and value) mode.HintKeyAndRAMIdxMode
:represents ram index (only key) mode.
The pattern
added in version 0.11.0
(represents the pattern to match):
pattern
syntax refer to:filepath.Match
The current version of ds
(represents the data structure):
- DataStructureSet
- DataStructureSortedSet
- DataStructureBPTree
- DataStructureList
if err := db.View(
func(tx *nutsdb.Tx) error {
return tx.IterateBuckets(nutsdb.DataStructureBPTree, "*", func(bucket string) bool {
fmt.Println("bucket: ", bucket)
// true: continue, false: break
return true
})
}); err != nil {
log.Fatal(err)
}
Delete bucket
DeleteBucket represents delete bucket. DeleteBucket function has two parameters: ds
(represents the data structure) and bucket
.
The current version of the Iterate Buckets method supports the following EntryId Modes:
HintKeyValAndRAMIdxMode
:represents ram index (key and value) mode.HintKeyAndRAMIdxMode
:represents ram index (only key) mode.
The current version of ds
(represents the data structure):
- DataStructureSet
- DataStructureSortedSet
- DataStructureBPTree
- DataStructureList
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.DeleteBucket(nutsdb.DataStructureBPTree, bucket)
}); err != nil {
log.Fatal(err)
}
Using key/value pairs
To save a key/value pair to a bucket, use the tx.Put
method:
if err := db.Update(
func(tx *nutsdb.Tx) error {
key := []byte("name1")
val := []byte("val1")
bucket := "bucket1"
if err := tx.Put(bucket, key, val, 0); err != nil {
return err
}
return nil
}); err != nil {
log.Fatal(err)
}
This will set the value of the "name1" key to "val1" in the bucket1 bucket.
To update the the value of the "name1" key,we can still use the tx.Put
function:
if err := db.Update(
func(tx *nutsdb.Tx) error {
key := []byte("name1")
val := []byte("val1-modify") // Update the value
bucket := "bucket1"
if err := tx.Put(bucket, key, val, 0); err != nil {
return err
}
return nil
}); err != nil {
log.Fatal(err)
}
To retrieve this value, we can use the tx.Get
function:
if err := db.View(
func(tx *nutsdb.Tx) error {
key := []byte("name1")
bucket := "bucket1"
if e, err := tx.Get(bucket, key); err != nil {
return err
} else {
fmt.Println(string(e.Value)) // "val1-modify"
}
return nil
}); err != nil {
log.Println(err)
}
Use the tx.Delete()
function to delete a key from the bucket.
if err := db.Update(
func(tx *nutsdb.Tx) error {
key := []byte("name1")
bucket := "bucket1"
if err := tx.Delete(bucket, key); err != nil {
return err
}
return nil
}); err != nil {
log.Fatal(err)
}
Using TTL(Time To Live)
NusDB supports TTL(Time to Live) for keys, you can use tx.Put
function with a ttl
parameter.
if err := db.Update(
func(tx *nutsdb.Tx) error {
key := []byte("name1")
val := []byte("val1")
bucket := "bucket1"
// If set ttl = 0 or Persistent, this key will never expired.
// Set ttl = 60 , after 60 seconds, this key will expired.
if err := tx.Put(bucket, key, val, 60); err != nil {
return err
}
return nil
}); err != nil {
log.Fatal(err)
}
Iterating over keys
NutsDB stores its keys in byte-sorted order within a bucket. This makes sequential iteration over these keys extremely fast.
Prefix scans
To iterate over a key prefix, we can use PrefixScan
function, and the parameters offsetNum
and limitNum
constrain the number of entries returned :
if err := db.View(
func(tx *nutsdb.Tx) error {
prefix := []byte("user_")
bucket := "user_list"
// Constrain 100 entries returned
if entries, _, err := tx.PrefixScan(bucket, prefix, 25, 100); err != nil {
return err
} else {
for _, entry := range entries {
fmt.Println(string(entry.Key), string(entry.Value))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
Prefix search scans
To iterate over a key prefix with search by regular expression on a second part of key without prefix, we can use PrefixSearchScan
function, and the parameters offsetNum
, limitNum
constrain the number of entries returned :
if err := db.View(
func(tx *nutsdb.Tx) error {
prefix := []byte("user_")
reg := "username"
bucket := "user_list"
// Constrain 100 entries returned
if entries, _, err := tx.PrefixSearchScan(bucket, prefix, reg, 25, 100); err != nil {
return err
} else {
for _, entry := range entries {
fmt.Println(string(entry.Key), string(entry.Value))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
Range scans
To scan over a range, we can use RangeScan
function. For example:
if err := db.View(
func(tx *nutsdb.Tx) error {
// Assume key from user_0000000 to user_9999999.
// Query a specific user key range like this.
start := []byte("user_0010001")
end := []byte("user_0010010")
bucket := "user_list"
if entries, err := tx.RangeScan(bucket, start, end); err != nil {
return err
} else {
for _, entry := range entries {
fmt.Println(string(entry.Key), string(entry.Value))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
Get all
To scan all keys and values of the bucket stored, we can use GetAll
function. For example:
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "user_list"
entries, err := tx.GetAll(bucket)
if err != nil {
return err
}
for _, entry := range entries {
fmt.Println(string(entry.Key),string(entry.Value))
}
return nil
}); err != nil {
log.Println(err)
}
iterator
The option parameter 'Reverse' that determines whether the iterator is forward or Reverse. The current version does not support the iterator for HintBPTSparseIdxMode.
forward iterator
tx, err := db.Begin(false)
iterator := nutsdb.NewIterator(tx, bucket, nutsdb.IteratorOptions{Reverse: false})
i := 0
for i < 10 {
ok, err := iterator.SetNext()
fmt.Println("ok, err", ok, err)
fmt.Println("Key: ", string(iterator.Entry().Key))
fmt.Println("Value: ", string(iterator.Entry().Value))
fmt.Println()
i++
}
err = tx.Commit()
if err != nil {
panic(err)
}
reverse iterator
tx, err := db.Begin(false)
iterator := nutsdb.NewIterator(tx, bucket, nutsdb.IteratorOptions{Reverse: true})
i := 0
for i < 10 {
ok, err := iterator.SetNext()
fmt.Println("ok, err", ok, err)
fmt.Println("Key: ", string(iterator.Entry().Key))
fmt.Println("Value: ", string(iterator.Entry().Value))
fmt.Println()
i++
}
err = tx.Commit()
if err != nil {
panic(err)
}
Merge Operation
In order to maintain high-performance writing, NutsDB will write multiple copies of the same key. If your service has multiple updates or deletions to the same key, and you want to merge the same key, you can use NutsDB to provide db.Merge()
method. This method requires you to write a merge strategy according to the actual situation. Once executed, it will block normal write requests, so it is best to avoid peak periods, such as scheduled execution in the middle of the night.
Of course, if you don't have too many updates or deletes for the same key, it is recommended not to use the Merge() function.
err := db.Merge()
if err != nil {
...
}
Notice: the HintBPTSparseIdxMode
mode does not support the merge operation of the current version.
Database backup
NutsDB is easy to backup. You can use the db.Backup()
function at given dir, call this function from a read-only transaction, and it will perform a hot backup and not block your other database reads and writes.
err = db.Backup(dir)
if err != nil {
...
}
NutsDB also provides gzip to compress backups. You can use the db.BackupTarGZ()
function.
f, _ := os.Create(path)
defer f.Close()
err = db.BackupTarGZ(f)
if err != nil {
...
}
Using in memory mode
In-memory mode is supported since nutsdb 0.7.0.
Run memory mode, after restarting the service, the data will be lost.
opts := inmemory.DefaultOptions
db, err := inmemory.Open(opts)
if err != nil {
...
}
bucket := "bucket1"
key := []byte("key1")
val := []byte("val1")
err = db.Put(bucket, key, val, 0)
if err != nil {
...
}
entry, err := db.Get(bucket, key)
if err != nil {
...
}
fmt.Println("entry.Key", string(entry.Key)) // entry.Key key1
fmt.Println("entry.Value", string(entry.Value)) // entry.Value val1
In memory mode, there are some non-memory mode APIs that have not yet been implemented. If you need, you can submit an issue and explain your request.
Using other data structures
The syntax here is modeled after Redis commands
List
RPush
Inserts the values at the tail of the list stored in the bucket at given bucket, key and values.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "bucketForList"
key := []byte("myList")
val := []byte("val1")
return tx.RPush(bucket, key, val)
}); err != nil {
log.Fatal(err)
}
LPush
Inserts the values at the head of the list stored in the bucket at given bucket, key and values.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "bucketForList"
key := []byte("myList")
val := []byte("val2")
return tx.LPush(bucket, key, val)
}); err != nil {
log.Fatal(err)
}
LPop
Removes and returns the first element of the list stored in the bucket at given bucket and key.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "bucketForList"
key := []byte("myList")
if item, err := tx.LPop(bucket, key); err != nil {
return err
} else {
fmt.Println("LPop item:", string(item))
}
return nil
}); err != nil {
log.Fatal(err)
}
LPeek
Returns the first element of the list stored in the bucket at given bucket and key.
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "bucketForList"
key := []byte("myList")
if item, err := tx.LPeek(bucket, key); err != nil {
return err
} else {
fmt.Println("LPeek item:", string(item)) //val11
}
return nil
}); err != nil {
log.Fatal(err)
}
RPop
Removes and returns the last element of the list stored in the bucket at given bucket and key.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "bucketForList"
key := []byte("myList")
if item, err := tx.RPop(bucket, key); err != nil {
return err
} else {
fmt.Println("RPop item:", string(item))
}
return nil
}); err != nil {
log.Fatal(err)
}
RPeek
Returns the last element of the list stored in the bucket at given bucket and key.
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "bucketForList"
key := []byte("myList")
if item, err := tx.RPeek(bucket, key); err != nil {
return err
} else {
fmt.Println("RPeek item:", string(item))
}
return nil
}); err != nil {
log.Fatal(err)
}
LRange
Returns the specified elements of the list stored in the bucket at given bucket,key, start and end. The offsets start and stop are zero-based indexes 0 being the first element of the list (the head of the list), 1 being the next element and so on. Start and end can also be negative numbers indicating offsets from the end of the list, where -1 is the last element of the list, -2 the penultimate element and so on.
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "bucketForList"
key := []byte("myList")
if items, err := tx.LRange(bucket, key, 0, -1); err != nil {
return err
} else {
//fmt.Println(items)
for _, item := range items {
fmt.Println(string(item))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
LRem
Note: This feature can be used starting from v0.6.0
Removes the first count occurrences of elements equal to value from the list stored in the bucket at given bucket,key,count. The count argument influences the operation in the following ways:
- count > 0: Remove elements equal to value moving from head to tail.
- count < 0: Remove elements equal to value moving from tail to head.
- count = 0: Remove all elements equal to value.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "bucketForList"
key := []byte("myList")
return tx.LRem(bucket, key, 1, []byte("value11))
}); err != nil {
log.Fatal(err)
}
LRemByIndex
Note: This feature can be used starting from v0.10.0
Remove the element at a specified position (single or multiple) from the list
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "bucketForList"
key := []byte("myList")
removedNum, err := tx.LRemByIndex(bucket, key, 0, 1)
fmt.Printf("removed num %d\n", removedNum)
return err
}); err != nil {
log.Fatal(err)
}
LSet
Sets the list element at index to value.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "bucketForList"
key := []byte("myList")
if err := tx.LSet(bucket, key, 0, []byte("val11")); err != nil {
return err
} else {
fmt.Println("LSet ok, index 0 item value => val11")
}
return nil
}); err != nil {
log.Fatal(err)
}
Ltrim
Trims an existing list so that it will contain only the specified range of elements specified. The offsets start and stop are zero-based indexes 0 being the first element of the list (the head of the list), 1 being the next element and so on.Start and end can also be negative numbers indicating offsets from the end of the list, where -1 is the last element of the list, -2 the penultimate element and so on.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "bucketForList"
key := []byte("myList")
return tx.LTrim(bucket, key, 0, 1)
}); err != nil {
log.Fatal(err)
}
LSize
Returns the size of key in the bucket in the bucket at given bucket and key.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "bucketForList"
key := []byte("myList")
if size,err := tx.LSize(bucket, key); err != nil {
return err
} else {
fmt.Println("myList size is ",size)
}
return nil
}); err != nil {
log.Fatal(err)
}
LKeys
find all keys
of type List
matching a given pattern
, similar to Redis command: KEYS
Note: pattern matching use filepath.Match
, It is different from redis' behavior in some details, such as [
.
if err := db.View(
func(tx *nutsdb.Tx) error {
var keys []string
err := tx.LKeys(bucket, "*", func(key string) bool {
keys = append(keys, key)
// true: continue, false: break
return true
})
fmt.Printf("keys: %v\n", keys)
return err
}); err != nil {
log.Fatal(err)
}
Set
SAdd
Adds the specified members to the set stored int the bucket at given bucket,key and items.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "bucketForSet"
key := []byte("mySet")
return tx.SAdd(bucket, key, []byte("a"), []byte("b"), []byte("c"))
}); err != nil {
log.Fatal(err)
}
SAreMembers
Returns if the specified members are the member of the set int the bucket at given bucket,key and items.
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "bucketForSet"
key := []byte("mySet")
if ok, err := tx.SAreMembers(bucket, key, []byte("a"), []byte("b"), []byte("c")); err != nil {
return err
} else {
fmt.Println("SAreMembers:", ok)
}
return nil
}); err != nil {
log.Fatal(err)
}
SCard
Returns the set cardinality (number of elements) of the set stored in the bucket at given bucket and key.
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "bucketForSet"
key := []byte("mySet")
if num, err := tx.SCard(bucket, key); err != nil {
return err
} else {
fmt.Println("SCard:", num)
}
return nil
}); err != nil {
log.Fatal(err)
}
SDiffByOneBucket
Returns the members of the set resulting from the difference between the first set and all the successive sets in one bucket.
key1 := []byte("mySet1")
key2 := []byte("mySet2")
bucket := "bucketForSet"
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.SAdd(bucket, key1, []byte("a"), []byte("b"), []byte("c"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.SAdd(bucket, key2, []byte("c"), []byte("d"))
}); err != nil {
log.Fatal(err)
}
if err := db.View(
func(tx *nutsdb.Tx) error {
if items, err := tx.SDiffByOneBucket(bucket, key1, key2); err != nil {
return err
} else {
fmt.Println("SDiffByOneBucket:", items)
for _, item := range items {
fmt.Println("item", string(item))
}
//item a
//item b
}
return nil
}); err != nil {
log.Fatal(err)
}
SDiffByTwoBuckets
Returns the members of the set resulting from the difference between the first set and all the successive sets in two buckets.
bucket1 := "bucket1"
key1 := []byte("mySet1")
bucket2 := "bucket2"
key2 := []byte("mySet2")
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.SAdd(bucket1, key1, []byte("a"), []byte("b"), []byte("c"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.SAdd(bucket2, key2, []byte("c"), []byte("d"))
}); err != nil {
log.Fatal(err)
}
if err := db.View(
func(tx *nutsdb.Tx) error {
if items, err := tx.SDiffByTwoBuckets(bucket1, key1, bucket2, key2); err != nil {
return err
} else {
fmt.Println("SDiffByTwoBuckets:", items)
for _, item := range items {
fmt.Println("item", string(item))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
SHasKey
Returns if the set in the bucket at given bucket and key.
bucket := "bucketForSet"
if err := db.View(
func(tx *nutsdb.Tx) error {
if ok, err := tx.SHasKey(bucket, []byte("mySet")); err != nil {
return err
} else {
fmt.Println("SHasKey", ok)
}
return nil
}); err != nil {
log.Fatal(err)
}
SIsMember
Returns if member is a member of the set stored in the bucket at given bucket, key and item.
bucket := "bucketForSet"
if err := db.View(
func(tx *nutsdb.Tx) error {
if ok, err := tx.SIsMember(bucket, []byte("mySet"), []byte("a")); err != nil {
return err
} else {
fmt.Println("SIsMember", ok)
}
return nil
}); err != nil {
log.Fatal(err)
}
SMembers
Returns all the members of the set value stored in the bucket at given bucket and key.
bucket := "bucketForSet"
if err := db.View(
func(tx *nutsdb.Tx) error {
if items, err := tx.SMembers(bucket, []byte("mySet")); err != nil {
return err
} else {
fmt.Println("SMembers", items)
for _, item := range items {
fmt.Println("item", string(item))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
SMoveByOneBucket
Moves member from the set at source to the set at destination in one bucket.
bucket3 := "bucket3"
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.SAdd(bucket3, []byte("mySet1"), []byte("a"), []byte("b"), []byte("c"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.SAdd(bucket3, []byte("mySet2"), []byte("c"), []byte("d"), []byte("e"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
if ok, err := tx.SMoveByOneBucket(bucket3, []byte("mySet1"), []byte("mySet2"), []byte("a")); err != nil {
return err
} else {
fmt.Println("SMoveByOneBucket", ok)
}
return nil
}); err != nil {
log.Fatal(err)
}
if err := db.View(
func(tx *nutsdb.Tx) error {
if items, err := tx.SMembers(bucket3, []byte("mySet1")); err != nil {
return err
} else {
fmt.Println("after SMoveByOneBucket bucket3 mySet1 SMembers", items)
for _, item := range items {
fmt.Println("item", string(item))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
if err := db.View(
func(tx *nutsdb.Tx) error {
if items, err := tx.SMembers(bucket3, []byte("mySet2")); err != nil {
return err
} else {
fmt.Println("after SMoveByOneBucket bucket3 mySet2 SMembers", items)
for _, item := range items {
fmt.Println("item", string(item))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
SMoveByTwoBuckets
Moves member from the set at source to the set at destination in two buckets.
bucket4 := "bucket4"
bucket5 := "bucket5"
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.SAdd(bucket4, []byte("mySet1"), []byte("a"), []byte("b"), []byte("c"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.SAdd(bucket5, []byte("mySet2"), []byte("c"), []byte("d"), []byte("e"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
if ok, err := tx.SMoveByTwoBuckets(bucket4, []byte("mySet1"), bucket5, []byte("mySet2"), []byte("a")); err != nil {
return err
} else {
fmt.Println("SMoveByTwoBuckets", ok)
}
return nil
}); err != nil {
log.Fatal(err)
}
if err := db.View(
func(tx *nutsdb.Tx) error {
if items, err := tx.SMembers(bucket4, []byte("mySet1")); err != nil {
return err
} else {
fmt.Println("after SMoveByTwoBuckets bucket4 mySet1 SMembers", items)
for _, item := range items {
fmt.Println("item", string(item))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
if err := db.View(
func(tx *nutsdb.Tx) error {
if items, err := tx.SMembers(bucket5, []byte("mySet2")); err != nil {
return err
} else {
fmt.Println("after SMoveByTwoBuckets bucket5 mySet2 SMembers", items)
for _, item := range items {
fmt.Println("item", string(item))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
SPop
Removes and returns one or more random elements from the set value store in the bucket at given bucket and key.
if err := db.Update(
func(tx *nutsdb.Tx) error {
key := []byte("mySet")
if item, err := tx.SPop(bucket, key); err != nil {
return err
} else {
fmt.Println("SPop item from mySet:", string(item))
}
return nil
}); err != nil {
log.Fatal(err)
}
SRem
Removes the specified members from the set stored in the bucket at given bucket,key and items.
bucket6:="bucket6"
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.SAdd(bucket6, []byte("mySet"), []byte("a"), []byte("b"), []byte("c"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
if err := tx.SRem(bucket6, []byte("mySet"), []byte("a")); err != nil {
return err
} else {
fmt.Println("SRem ok")
}
return nil
}); err != nil {
log.Fatal(err)
}
if err := db.View(
func(tx *nutsdb.Tx) error {
if items, err := tx.SMembers(bucket6, []byte("mySet")); err != nil {
return err
} else {
fmt.Println("SMembers items:", items)
for _, item := range items {
fmt.Println("item:", string(item))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
SUnionByOneBucket
The members of the set resulting from the union of all the given sets in one bucket.
bucket7 := "bucket1"
key1 := []byte("mySet1")
key2 := []byte("mySet2")
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.SAdd(bucket7, key1, []byte("a"), []byte("b"), []byte("c"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.SAdd(bucket7, key2, []byte("c"), []byte("d"))
}); err != nil {
log.Fatal(err)
}
if err := db.View(
func(tx *nutsdb.Tx) error {
if items, err := tx.SUnionByOneBucket(bucket7, key1, key2); err != nil {
return err
} else {
fmt.Println("SUnionByOneBucket:", items)
for _, item := range items {
fmt.Println("item", string(item))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
SUnionByTwoBuckets
The members of the set resulting from the union of all the given sets in two buckets.
bucket8 := "bucket1"
key1 := []byte("mySet1")
bucket9 := "bucket2"
key2 := []byte("mySet2")
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.SAdd(bucket8, key1, []byte("a"), []byte("b"), []byte("c"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
return tx.SAdd(bucket9, key2, []byte("c"), []byte("d"))
}); err != nil {
log.Fatal(err)
}
if err := db.View(
func(tx *nutsdb.Tx) error {
if items, err := tx.SUnionByTwoBuckets(bucket8, key1, bucket9, key2); err != nil {
return err
} else {
fmt.Println("SUnionByTwoBucket:", items)
for _, item := range items {
fmt.Println("item", string(item))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
SKeys
find all keys
of type Set
matching a given pattern
, similar to Redis command: KEYS
Note: pattern matching use filepath.Match
, It is different from redis' behavior in some details, such as [
.
if err := db.View(
func(tx *nutsdb.Tx) error {
var keys []string
err := tx.SKeys(bucket, "*", func(key string) bool {
keys = append(keys, key)
// true: continue, false: break
return true
})
fmt.Printf("keys: %v\n", keys)
return err
}); err != nil {
log.Fatal(err)
}
Sorted Set
ZAdd
Adds the specified member with the specified score and the specified value to the sorted set stored at bucket.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet1"
key := []byte("key1")
return tx.ZAdd(bucket, key, 1, []byte("val1"))
}); err != nil {
log.Fatal(err)
}
ZCard
Returns the sorted set cardinality (number of elements) of the sorted set stored at bucket.
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet1"
if num, err := tx.ZCard(bucket); err != nil {
return err
} else {
fmt.Println("ZCard num", num)
}
return nil
}); err != nil {
log.Fatal(err)
}
ZCount
Returns the number of elements in the sorted set at bucket with a score between min and max and opts.
Opts includes the following parameters:
- Limit int // limit the max nodes to return
- ExcludeStart bool // exclude start value, so it search in interval (start, end] or (start, end)
- ExcludeEnd bool // exclude end value, so it search in interval [start, end) or (start, end)
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet1"
if num, err := tx.ZCount(bucket, 0, 1, nil); err != nil {
return err
} else {
fmt.Println("ZCount num", num)
}
return nil
}); err != nil {
log.Fatal(err)
}
ZGetByKey
Returns node in the bucket at given bucket and key.
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet1"
key := []byte("key2")
if node, err := tx.ZGetByKey(bucket, key); err != nil {
return err
} else {
fmt.Println("ZGetByKey key2 val:", string(node.Value))
}
return nil
}); err != nil {
log.Fatal(err)
}
ZMembers
Returns all the members of the set value stored at bucket.
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet1"
if nodes, err := tx.ZMembers(bucket); err != nil {
return err
} else {
fmt.Println("ZMembers:", nodes)
for _, node := range nodes {
fmt.Println("member:", node.Key(), string(node.Value))
}
}
return nil
}); err != nil {
log.Fatal(err)
}
ZPeekMax
Returns the member with the highest score in the sorted set stored at bucket.
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet1"
if node, err := tx.ZPeekMax(bucket); err != nil {
return err
} else {
fmt.Println("ZPeekMax:", string(node.Value))
}
return nil
}); err != nil {
log.Fatal(err)
}
ZPeekMin
Returns the member with lowest score in the sorted set stored at bucket.
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet1"
if node, err := tx.ZPeekMin(bucket); err != nil {
return err
} else {
fmt.Println("ZPeekMin:", string(node.Value))
}
return nil
}); err != nil {
log.Fatal(err)
}
ZPopMax
Removes and returns the member with the highest score in the sorted set stored at bucket.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet1"
if node, err := tx.ZPopMax(bucket); err != nil {
return err
} else {
fmt.Println("ZPopMax:", string(node.Value)) //val3
}
return nil
}); err != nil {
log.Fatal(err)
}
ZPopMin
Removes and returns the member with the lowest score in the sorted set stored at bucket.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet1"
if node, err := tx.ZPopMin(bucket); err != nil {
return err
} else {
fmt.Println("ZPopMin:", string(node.Value)) //val1
}
return nil
}); err != nil {
log.Fatal(err)
}
ZRangeByRank
Returns all the elements in the sorted set in one bucket at bucket and key with a rank between start and end (including elements with rank equal to start or end).
// ZAdd add items
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet2"
key1 := []byte("key1")
return tx.ZAdd(bucket, key1, 1, []byte("val1"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet2"
key2 := []byte("key2")
return tx.ZAdd(bucket, key2, 2, []byte("val2"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet2"
key3 := []byte("key3")
return tx.ZAdd(bucket, key3, 3, []byte("val3"))
}); err != nil {
log.Fatal(err)
}
// ZRangeByRank
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet2"
if nodes, err := tx.ZRangeByRank(bucket, 1, 2); err != nil {
return err
} else {
fmt.Println("ZRangeByRank nodes :", nodes)
for _, node := range nodes {
fmt.Println("item:", node.Key(), node.Score())
}
//item: key1 1
//item: key2 2
}
return nil
}); err != nil {
log.Fatal(err)
}
ZRangeByScore
Returns all the elements in the sorted set at key with a score between min and max.
And the parameter Opts
is the same as ZCount's.
// ZAdd
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet3"
key1 := []byte("key1")
return tx.ZAdd(bucket, key1, 70, []byte("val1"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet3"
key2 := []byte("key2")
return tx.ZAdd(bucket, key2, 90, []byte("val2"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet3"
key3 := []byte("key3")
return tx.ZAdd(bucket, key3, 86, []byte("val3"))
}); err != nil {
log.Fatal(err)
}
// ZRangeByScore
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet3"
if nodes, err := tx.ZRangeByScore(bucket, 80, 100,nil); err != nil {
return err
} else {
fmt.Println("ZRangeByScore nodes :", nodes)
for _, node := range nodes {
fmt.Println("item:", node.Key(), node.Score())
}
//item: key3 86
//item: key2 90
}
return nil
}); err != nil {
log.Fatal(err)
}
ZRank
Returns the rank of member in the sorted set stored in the bucket at given bucket and key, with the scores ordered from low to high.
// ZAdd
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet4"
key1 := []byte("key1")
return tx.ZAdd(bucket, key1, 70, []byte("val1"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet4"
key2 := []byte("key2")
return tx.ZAdd(bucket, key2, 90, []byte("val2"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet4"
key3 := []byte("key3")
return tx.ZAdd(bucket, key3, 86, []byte("val3"))
}); err != nil {
log.Fatal(err)
}
// ZRank
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet4"
key1 := []byte("key1")
if rank, err := tx.ZRank(bucket, key1); err != nil {
return err
} else {
fmt.Println("key1 ZRank :", rank) // key1 ZRank : 1
}
return nil
}); err != nil {
log.Fatal(err)
}
ZRevRank
Returns the rank of member in the sorted set stored in the bucket at given bucket and key,with the scores ordered from high to low.
// ZAdd
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet8"
key1 := []byte("key1")
return tx.ZAdd(bucket, key1, 10, []byte("val1"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet8"
key2 := []byte("key2")
return tx.ZAdd(bucket, key2, 20, []byte("val2"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet8"
key3 := []byte("key3")
return tx.ZAdd(bucket, key3, 30, []byte("val3"))
}); err != nil {
log.Fatal(err)
}
// ZRevRank
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet8"
if rank, err := tx.ZRevRank(bucket, []byte("key3")); err != nil {
return err
} else {
fmt.Println("ZRevRank key1 rank:", rank) //ZRevRank key3 rank: 1
}
return nil
}); err != nil {
log.Fatal(err)
}
ZRem
Removes the specified members from the sorted set stored in one bucket at given bucket and key.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet5"
key1 := []byte("key1")
return tx.ZAdd(bucket, key1, 10, []byte("val1"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet5"
key2 := []byte("key2")
return tx.ZAdd(bucket, key2, 20, []byte("val2"))
}); err != nil {
log.Fatal(err)
}
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet5"
if nodes,err := tx.ZMembers(bucket); err != nil {
return err
} else {
fmt.Println("before ZRem key1, ZMembers nodes",nodes)
for _,node:=range nodes {
fmt.Println("item:",node.Key(),node.Score())
}
}
// before ZRem key1, ZMembers nodes map[key1:0xc00008cfa0 key2:0xc00008d090]
// item: key1 10
// item: key2 20
return nil
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet5"
if err := tx.ZRem(bucket, "key1"); err != nil {
return err
}
return nil
}); err != nil {
log.Fatal(err)
}
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet5"
if nodes,err := tx.ZMembers(bucket); err != nil {
return err
} else {
fmt.Println("after ZRem key1, ZMembers nodes",nodes)
for _,node:=range nodes {
fmt.Println("item:",node.Key(),node.Score())
}
// after ZRem key1, ZMembers nodes map[key2:0xc00008d090]
// item: key2 20
}
return nil
}); err != nil {
log.Fatal(err)
}
ZRemRangeByRank
Removes all elements in the sorted set stored in one bucket at given bucket with rank between start and end. The rank is 1-based integer. Rank 1 means the first node; Rank -1 means the last node.
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet6"
key1 := []byte("key1")
return tx.ZAdd(bucket, key1, 10, []byte("val1"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet6"
key2 := []byte("key2")
return tx.ZAdd(bucket, key2, 20, []byte("val2"))
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet6"
key3 := []byte("key3")
return tx.ZAdd(bucket, key3, 30, []byte("val2"))
}); err != nil {
log.Fatal(err)
}
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet6"
if nodes,err := tx.ZMembers(bucket); err != nil {
return err
} else {
fmt.Println("before ZRemRangeByRank, ZMembers nodes",nodes)
for _,node:=range nodes {
fmt.Println("item:",node.Key(),node.Score())
}
// before ZRemRangeByRank, ZMembers nodes map[key3:0xc00008d450 key1:0xc00008d270 key2:0xc00008d360]
// item: key1 10
// item: key2 20
// item: key3 30
}
return nil
}); err != nil {
log.Fatal(err)
}
if err := db.Update(
func(tx *nutsdb.Tx) error {
bucket := "myZSet6"
if err := tx.ZRemRangeByRank(bucket, 1,2); err != nil {
return err
}
return nil
}); err != nil {
log.Fatal(err)
}
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet6"
if nodes,err := tx.ZMembers(bucket); err != nil {
return err
} else {
fmt.Println("after ZRemRangeByRank, ZMembers nodes",nodes)
for _,node:=range nodes {
fmt.Println("item:",node.Key(),node.Score())
}
// after ZRemRangeByRank, ZMembers nodes map[key3:0xc00008d450]
// item: key3 30
// key1 ZScore 10
}
return nil
}); err != nil {
log.Fatal(err)
}
ZScore
Returns the score of member in the sorted set in the bucket at given bucket and key.
if err := db.View(
func(tx *nutsdb.Tx) error {
bucket := "myZSet7"
if score,err := tx.ZScore(bucket, []byte("key1")); err != nil {
return err
} else {
fmt.Println("ZScore key1 score:",score)
}
return nil
}); err != nil {
log.Fatal(err)
}
ZKeys
find all keys
of type Sorted Set
matching a given pattern
, similar to Redis command: KEYS
Note: pattern matching use filepath.Match
, It is different from redis' behavior in some details, such as [
.
if err := db.View(
func(tx *nutsdb.Tx) error {
var keys []string
err := tx.ZKeys(bucket, "*", func(key string) bool {
keys = append(keys, key)
// true: continue, false: break
return true
})
fmt.Printf("keys: %v\n", keys)
return err
}); err != nil {
log.Fatal(err)
}
Comparison with other databases
BoltDB
BoltDB is similar to NutsDB, both use B+tree and support transaction. However, Bolt uses a B+tree internally and only a single file, and NutsDB is based on bitcask model with multiple log files. NutsDB supports TTL and many data structures, but BoltDB does not support them .
LevelDB, RocksDB
LevelDB and RocksDB are based on a log-structured merge-tree (LSM tree).An LSM tree optimizes random writes by using a write ahead log and multi-tiered, sorted files called SSTables. LevelDB does not have transactions. It supports batch writing of key/value pairs and it supports read snapshots but it will not give you the ability to do a compare-and-swap operation safely. NutsDB supports many data structures, but RocksDB does not support them.
Badger
Badger is based in LSM tree with value log. It designed for SSDs. It also supports transaction and TTL. But in my benchmark its write performance is not as good as i thought. In addition, NutsDB supports data structures such as list、set、sorted set, but Badger does not support them.
Benchmarks
Tested kvstore
Selected kvstore which is embedded, persistence and support transactions.
- BadgerDB (master branch with default options)
- BoltDB (master branch with default options)
- NutsDB (master branch with default options or custom options)
Benchmark System:
- Go Version : go1.11.4 darwin/amd64
- OS: Mac OS X 10.13.6
- Architecture: x86_64
- 16 GB 2133 MHz LPDDR3
- CPU: 3.1 GHz Intel Core i7
Benchmark results:
badger 2019/03/11 18:06:05 INFO: All 0 tables opened in 0s
goos: darwin
goarch: amd64
pkg: github.com/xujiajun/kvstore-bench
BenchmarkBadgerDBPutValue64B-8 10000 112382 ns/op 2374 B/op 74 allocs/op
BenchmarkBadgerDBPutValue128B-8 20000 94110 ns/op 2503 B/op 74 allocs/op
BenchmarkBadgerDBPutValue256B-8 20000 93480 ns/op 2759 B/op 74 allocs/op
BenchmarkBadgerDBPutValue512B-8 10000 101407 ns/op 3271 B/op 74 allocs/op
BenchmarkBadgerDBGet-8 1000000 1552 ns/op 416 B/op 9 allocs/op
BenchmarkBoltDBPutValue64B-8 10000 203128 ns/op 21231 B/op 62 allocs/op
BenchmarkBoltDBPutValue128B-8 5000 229568 ns/op 13716 B/op 64 allocs/op
BenchmarkBoltDBPutValue256B-8 10000 196513 ns/op 17974 B/op 64 allocs/op
BenchmarkBoltDBPutValue512B-8 10000 199805 ns/op 17064 B/op 64 allocs/op
BenchmarkBoltDBGet-8 1000000 1122 ns/op 592 B/op 10 allocs/op
BenchmarkNutsDBPutValue64B-8 30000 53614 ns/op 626 B/op 14 allocs/op
BenchmarkNutsDBPutValue128B-8 30000 51998 ns/op 664 B/op 13 allocs/op
BenchmarkNutsDBPutValue256B-8 30000 53958 ns/op 920 B/op 13 allocs/op
BenchmarkNutsDBPutValue512B-8 30000 55787 ns/op 1432 B/op 13 allocs/op
BenchmarkNutsDBGet-8 2000000 661 ns/op 88 B/op 3 allocs/op
BenchmarkNutsDBGetByHintKey-8 50000 27255 ns/op 840 B/op 16 allocs/op
PASS
ok github.com/xujiajun/kvstore-bench 83.856s
Conclusions:
Put(write) Performance:
NutsDB is fastest. NutsDB is 2-5x faster than BoltDB, 0.5-2x faster than BadgerDB. And BadgerDB is 1-3x faster than BoltDB.
Get(read) Performance:
All are fast. And NutsDB is 1x faster than others. And NutsDB reads with HintKey option is much slower than its default option way.
the benchmark code can be found in the gokvstore-bench repo.
Caveats & Limitations
Index mode
From the version v0.3.0, NutsDB supports two modes about entry index: HintKeyValAndRAMIdxMode
and HintKeyAndRAMIdxMode
. From the version v0.5.0, NutsDB supports HintBPTSparseIdxMode
mode.
The default mode use HintKeyValAndRAMIdxMode
, entries are indexed base on RAM, so its read/write performance is fast. but can’t handle databases much larger than the available physical RAM. If you set the HintKeyAndRAMIdxMode
mode, HintIndex will not cache the value of the entry. Its write performance is also fast. To retrieve a key by seeking to offset relative to the start of the data file, so its read performance more slowly that RAM way, but it can save memory. The mode HintBPTSparseIdxMode
is based b+ tree sparse index, this mode saves memory very much (1 billion data only uses about 80MB of memory). And other data structures such as list, set, sorted set only supported with mode HintKeyValAndRAMIdxMode.
It cannot switch back and forth between modes because the index structure is different.
NutsDB will truncate data file if the active file is larger than SegmentSize
, so the size of an entry can not be set larger than SegmentSize
, default SegmentSize
is 8MB, you can set it(opt.SegmentSize) as option before DB opening. Once set, it cannot be changed.
Support OS
NutsDB currently works on Mac OS, Linux and Windows.
About merge operation
The HintBPTSparseIdxMode mode does not support the merge operation of the current version.
About transactions
Recommend use the latest version.
Contact
Contributing
See CONTRIBUTING for details on submitting patches and the contribution workflow.
Acknowledgements
This package is inspired by the following:
License
The NutsDB is open-sourced software licensed under the Apache 2.0 license.
*Note that all licence references and agreements mentioned in the nutsdb README section above
are relevant to that project's source code only.