Popularity
8.7
Declining
Activity
3.6
-
3,045
351
201

Description

Provides the memdb package that implements a simple in-memory database built on immutable radix trees. The database provides Atomicity, Consistency and Isolation from ACID. Being that it is in-memory, it does not provide durability. The database is instantiated with a schema that specifies the tables and indices that exist and allows transactions to be executed.

The database provides the following: - Multi-Version Concurrency Control (MVCC) - Transaction Support - Rich Indexing - Watches

Programming language: Go
License: Mozilla Public License 2.0
Tags: Database     NoSQL Databases     In-Memory    
Latest version: v1.3.0

go-memdb alternatives and similar packages

Based on the "Database" category.
Alternatively, view go-memdb alternatives based on common mentions on social networks and blogs.

Do you think we are missing an alternative of go-memdb or a related project?

Add another 'Database' Package

README

go-memdb CircleCI

Provides the memdb package that implements a simple in-memory database built on immutable radix trees. The database provides Atomicity, Consistency and Isolation from ACID. Being that it is in-memory, it does not provide durability. The database is instantiated with a schema that specifies the tables and indices that exist and allows transactions to be executed.

The database provides the following:

  • Multi-Version Concurrency Control (MVCC) - By leveraging immutable radix trees the database is able to support any number of concurrent readers without locking, and allows a writer to make progress.

  • Transaction Support - The database allows for rich transactions, in which multiple objects are inserted, updated or deleted. The transactions can span multiple tables, and are applied atomically. The database provides atomicity and isolation in ACID terminology, such that until commit the updates are not visible.

  • Rich Indexing - Tables can support any number of indexes, which can be simple like a single field index, or more advanced compound field indexes. Certain types like UUID can be efficiently compressed from strings into byte indexes for reduced storage requirements.

  • Watches - Callers can populate a watch set as part of a query, which can be used to detect when a modification has been made to the database which affects the query results. This lets callers easily watch for changes in the database in a very general way.

For the underlying immutable radix trees, see go-immutable-radix.

Documentation

The full documentation is available on Godoc.

Example

Below is a simple example of usage

// Create a sample struct
type Person struct {
    Email string
    Name  string
    Age   int
}

// Create the DB schema
schema := &memdb.DBSchema{
    Tables: map[string]*memdb.TableSchema{
        "person": &memdb.TableSchema{
            Name: "person",
            Indexes: map[string]*memdb.IndexSchema{
                "id": &memdb.IndexSchema{
                    Name:    "id",
                    Unique:  true,
                    Indexer: &memdb.StringFieldIndex{Field: "Email"},
                },
                "age": &memdb.IndexSchema{
                    Name:    "age",
                    Unique:  false,
                    Indexer: &memdb.IntFieldIndex{Field: "Age"},
                },
            },
        },
    },
}

// Create a new data base
db, err := memdb.NewMemDB(schema)
if err != nil {
    panic(err)
}

// Create a write transaction
txn := db.Txn(true)

// Insert some people
people := []*Person{
    &Person{"[email protected]", "Joe", 30},
    &Person{"[email protected]", "Lucy", 35},
    &Person{"[email protected]", "Tariq", 21},
    &Person{"[email protected]", "Dorothy", 53},
}
for _, p := range people {
    if err := txn.Insert("person", p); err != nil {
        panic(err)
    }
}

// Commit the transaction
txn.Commit()

// Create read-only transaction
txn = db.Txn(false)
defer txn.Abort()

// Lookup by email
raw, err := txn.First("person", "id", "[email protected]")
if err != nil {
    panic(err)
}

// Say hi!
fmt.Printf("Hello %s!\n", raw.(*Person).Name)

// List all the people
it, err := txn.Get("person", "id")
if err != nil {
    panic(err)
}

fmt.Println("All the people:")
for obj := it.Next(); obj != nil; obj = it.Next() {
    p := obj.(*Person)
    fmt.Printf("  %s\n", p.Name)
}

// Range scan over people with ages between 25 and 35 inclusive
it, err = txn.LowerBound("person", "age", 25)
if err != nil {
    panic(err)
}

fmt.Println("People aged 25 - 35:")
for obj := it.Next(); obj != nil; obj = it.Next() {
    p := obj.(*Person)
    if p.Age > 35 {
        break
    }
    fmt.Printf("  %s is aged %d\n", p.Name, p.Age)
}
// Output:
// Hello Joe!
// All the people:
//   Dorothy
//   Joe
//   Lucy
//   Tariq
// People aged 25 - 35:
//   Joe is aged 30
//   Lucy is aged 35