slice alternatives and similar packages
Based on the "Utilities" category.
Alternatively, view slice alternatives based on common mentions on social networks and blogs.
-
项目文档
🚀Vite+Vue3+Gin的开发基础平台,支持TS和JS混用。它集成了JWT鉴权、权限管理、动态路由、显隐可控组件、分页封装、多点登录拦截、资源权限、上传下载、代码生成器【可AI辅助】、表单生成器和可配置的导入导出等开发必备功能。 -
excelize
Go language library for reading and writing Microsoft Excel™ (XLAM / XLSM / XLSX / XLTM / XLTX) spreadsheets -
Kopia
Cross-platform backup tool for Windows, macOS & Linux with fast, incremental backups, client-side end-to-end encryption, compression and data deduplication. CLI and GUI included. -
goreporter
A Golang tool that does static analysis, unit testing, code review and generate code quality report. -
create-go-app
✨ A complete and self-contained solution for developers of any qualification to create a production-ready project with backend (Go), frontend (JavaScript, TypeScript) and deploy automation (Ansible, Docker) by running only one CLI command. -
EaseProbe
A simple, standalone, and lightweight tool that can do health/status checking, written in Go. -
filetype
Fast, dependency-free Go package to infer binary file types based on the magic numbers header signature -
boilr
:zap: boilerplate template manager that generates files or directories from template repositories -
beaver
💨 A real time messaging system to build a scalable in-app notifications, multiplayer games, chat apps in web and mobile apps. -
go-underscore
Helpfully Functional Go - A useful collection of Go utilities. Designed for programmer happiness.
InfluxDB - Purpose built for real-time analytics at any scale.
Do you think we are missing an alternative of slice or a related project?
Popular Comparisons
README
Type-safe functions for common Go slice operations.
Installation
go get github.com/psampaz/slice
Operations
✔ = Supported
✕ = Non supported
- = Not yet implemented
bool | byte | complex(all) | float(all) | int(all) | string | uint(all) | uintptr | |
---|---|---|---|---|---|---|---|---|
Batch | - | - | - | - | - | - | - | - |
Contains | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Copy | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Deduplicate | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Delete | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
DeleteRange | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Filter | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Insert | - | - | - | - | - | - | - | - |
Max | ✕ | ✔ | ✕ | ✔ | ✔ | ✕ | ✔ | ✔ |
Min | ✕ | ✔ | ✕ | ✔ | ✔ | ✕ | ✔ | ✔ |
Pop | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Push | - | - | - | - | - | - | - | - |
Reverse | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Shift | - | - | - | - | - | - | - | - |
Shuffle | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Sum | ✕ | ✔ | ✔ | ✔ | ✔ | ✕ | ✔ | ✔ |
Unshift | - | - | - | - | - | - | - | - |
Examples
slice.Deduplicate
Deduplicate performs order preserving, in place deduplication of a slice
a := []int{1, 2, 3, 2, 5, 3}
a = slice.DeduplicateInt(a) // [1, 2, 3, 5]
slice.Delete
Delete removes an element at a specific index of a slice. An error is return in case the index is out of bounds or the slice is nil or empty.
a := []int{1, 2, 3, 4, 5}
a, err = slice.DeleteInt(a, 2) // [1, 2, 4, 5], nil
slice.DeleteRange
DeleteRange deletes the elements between from and to index (inclusive) from a slice. An error is return in case the index is out of bounds or the slice is nil or empty.
a := []int{1, 2, 3, 4, 5}
a, err = slice.DeleteRangeInt(a, 2, 3) // [1, 2, 5], nil
slice.Contains
Contains checks if a specific value exists in a slice.
a := []int{1, 2, 3, 4, 5}
exists := slice.ContainsInt(a, 3) // true
slice.Copy
Copy creates a copy of a slice. The resulting slice has the same elements as the original but the underlying array is different. See https://github.com/go101/go101/wiki
a := []int{1, 2, 3, 4}
b := slice.CopyInt(a) // [1, 2, 3, 4]
slice.Filter
Filter performs in place filtering of a slice based on a predicate
a := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
keep := func(x int) bool {
return x%2 == 0
}
a = slice.FilterInt(a, keep) // [2, 4, 6, 8, 10]
slice.Max
Max returns the maximum value of a slice or an error in case of a nil or empty slice.
a := []int{1, 2, 3, 0, 4, 5}
max, err := slice.MaxInt(a) // 5, nil
slice.Min
Min returns the minimum value of a slice or an error in case of a nil or empty slice.
a := []int{1, 2, 3, 0, 4, 5}
min, err := slice.MinInt(a) // 0, nil
slice.Pop
Pop removes and returns the last value a slice and the remaining slice. An error is returned in case of a nil or empty slice.
a := []int{1, 2, 3, 4, 5}
v, a, err := slice.PopInt(a) // 5, [1, 2, 3, 4], nil
slice.Reverse
Reverse performs in place reversal of a slice
a := []int{1, 2, 3, 4, 5}
a = slice.ReverseInt(a) // [5, 4, 3, 2, 1]
slice.Shuffle
Shuffle shuffles (in place) a slice
a := []int{1, 2, 3, 4, 5}
a = slice.ShuffleInt(a) // [3, 5, 1, 4, 2] (random output)
slice.Sum
Sum returns the sum of the values of a slice or an error in case of a nil or empty slice
a := []int{1, 2, 3}
sum, err := slice.SumInt(a) // 6, nil
Tests
if you want to run the test suite for this library:
$ go test -v -cover
Credits
- SliceTricks (https://github.com/golang/go/wiki/SliceTricks). This was the inspiration behind this library.
- Genny (https://github.com/cheekybits/genny). In order to speedup the development and avoid massive copy paste, the excellent Genny library was used.
Contributing
You are very welcome to contribute new operations or bug fixes in this library.
Contribution guidelines (code)
Use only functions. This is a function based library so struct based operations will not be accepted, in order to preserve simplicity and consistency.
If the operation is not working on a nil or empty slice, then the function should return an error.
If the operation accepts slice indexes as parameters, then the function should guard against out of bound index values and return an error in that case.
All operations should be in place operations, meaning that they should alter the original slice.
Each function should have precise documentation.
Each operation should live in each own file. Example:
min.go min_test.go
The naming convention for functions is OperationType. Example:
MinInt32()
instead of
Int32Min()
Implement ALL applicable types in the same PR.
Include one testable example for Int type at the end of the test file.
Include one example in the Examples section of README
Update the table in the Operation section of README
Update the UNRELEASED section of CHANGELOG
Contribution guidelines (tests)
- All code should be 100% covered with tests
- All operations should be tested for 3 scenarios at least:
- nil slice
- empty slice
- non empty slice
Static code analysis
golangci.com runs on all PRs. Code is checked with golint, go vet, gofmt, plus 20+ linters, and review comments will be automatically added in your PR in case of a failure. You can see the whole list of linters here: https://golangci.com/product#linters
Steps for contributing new operations
- Open an issue describing the new operation, the proposed name and the applicable types.
- If the operation is approved to be included in the library, create a small PR the implementation and test for only only type.
- After code review you can proceed the implementation for the rest types. This is necessary because if you submit a PR with the implementation and test for all types, a small correction during review could eventually lead to a big refactor due to code duplication.
Using Genny for fast implementation of all types of an operation (Optional)
The following steps are an example of how to use [https://github.com/cheekybits/genny](Genny) to implement the min operation:
Install Genny
go get github.com/cheekybits/genny
Create a file named min_genny.go
package slice import ( "errors" "github.com/cheekybits/genny/generic" ) type Type generic.Type // MinType returns the minimum value of an Type slice or an error in case of a nil or empty slice func MinType(a []Type) (Type, error) { if len(a) == 0 { return 0, errors.New("Cannot get the minimum of a nil or empty slice") } min := a[0] for k := 1; k < len(a); k++ { if a[k] < min { min = a[k] } } return min, nil }
Use genny to generate code for all Go's built in types:
cat min_genny.go | genny gen Type=BUILTINS > min.go
This step will generate a file min.go with the following content:
package slice import "errors" // MinByte returns the minimum value of a byte slice or an error in case of a nil or empty slice func MinByte(a []byte) (byte, error) { if len(a) == 0 { return 0, errors.New("Cannot get the minimum of a nil or empty slice") } min := a[0] for k := 1; k < len(a); k++ { if a[k] < min { min = a[k] } } return min, nil } // MinFloat32 returns the minimum value of a float32 slice or an error in case of a nil or empty slice func MinFloat32(a []float32) (float32, error) { if len(a) == 0 { return 0, errors.New("Cannot get the minimum of a nil or empty slice") } min := a[0] for k := 1; k < len(a); k++ { if a[k] < min { min = a[k] } } return min, nil } . . . .
Delete the implementation for all types not applicable for the operation
Create a file named min_genny_test.go
package slice import ( "fmt" "testing" ) func TestMinType(t *testing.T) { type args struct { a []Type } tests := []struct { name string args args want Type wantErr bool }{ { name: "nil slice", args: args{ a: nil, }, want: 0, wantErr: true, }, { name: "empty slice", args: args{ a: []Type{}, }, want: 0, wantErr: true, }, { name: "non empty slice", args: args{ a: []Type{1, 3, 2, 0, 5, 4}, }, want: 0, wantErr: false, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { got, err := MinType(tt.args.a) if (err != nil) != tt.wantErr { t.Errorf("MinType() error = %v, wantErr %v", err, tt.wantErr) return } if got != tt.want { t.Errorf("MinType() = %v, want %v", got, tt.want) } }) } }
Use genny to generate tests for all Go's built in types:
cat min_genny_test.go | genny gen Type=BUILTINS > min_test.go
This step will generate a file min_test.go with tests for each one of Go's built in types.
Remove tests for non applicable types.
Adjust the tests for each one of the types.
Delete min_genny.go and min_genny_test.go