Popularity
9.3
Growing
Activity
9.3
Growing
6,423
38
240

Description

✨ lo is a Lodash-style Go library based on Go 1.18+ Generics.

This project have started as an experiment to discover generics implementation. It may look like Lodash in some aspects. I used to code with the awesome go-funk package, but it uses reflection and therefore is not typesafe.

Benchmarks demonstrate that generics will be much faster than reflect-based implementations.

Programming language: Go
License: MIT License
Tags: Functional     Utility     Package     Library     Generics     Lodash     Typesafe     Contract    
Latest version: v1.21.0

lo alternatives and similar packages

Based on the "Functional" category.
Alternatively, view lo alternatives based on common mentions on social networks and blogs.

  • mo

    6.6 6.0 lo VS mo
    πŸ¦„ Monads and popular FP abstractions, powered by Go 1.18+ Generics (Option, Result, Either...)
  • fpGo

    5.7 8.8 lo VS fpGo
    Monad, Functional Programming features for Golang
  • Up your coding game and discover issues early. SonarLint is a free plugin that helps you find & fix bugs and security issues from the moment you start writing code. Install from your favorite IDE marketplace today.
  • gofp

    4.5 3.1 lo VS gofp
    A super simple Lodash like utility library with essential functions that empowers the development in Go
  • fuego

    Functional Experiment in Golang
  • Goterators

    A utility library that supports aggregate & transforms functions Go with generic. Such as filter, map, reduce, find, exist
  • fp-go

    Fp-go is a collection of Functional Programming helpers powered by Golang 1.18+ generics.
  • underscore

    🌟 Useful functional programming helpers for Go 1.18 and beyond
  • valor

    Go option and result types that optionally contain a value

Do you think we are missing an alternative of lo or a related project?

Add another 'Functional' Package

README

lo

tag GoDoc Build Status Go report codecov

✨ samber/lo is a Lodash-style Go library based on Go 1.18+ Generics.

This project started as an experiment with the new generics implementation. It may look like Lodash in some aspects. I used to code with the fantastic "go-funk" package, but "go-funk" uses reflection and therefore is not typesafe.

As expected, benchmarks demonstrate that generics will be much faster than implementations based on the "reflect" package. Benchmarks also show similar performance gains compared to pure for loops. [See below](#-benchmark).

In the future, 5 to 10 helpers will overlap with those coming into the Go standard library (under package names slices and maps). I feel this library is legitimate and offers many more valuable abstractions.

See also:

  • samber/do: A dependency injection toolkit based on Go 1.18+ Generics
  • samber/mo: Monads based on Go 1.18+ Generics (Option, Result, Either...)

Why this name?

I wanted a short name, similar to "Lodash" and no Go package currently uses this name.

πŸš€ Install

go get github.com/samber/[email protected]

This library is v1 and follows SemVer strictly.

No breaking changes will be made to exported APIs before v2.0.0.

πŸ’‘ Usage

You can import lo using:

import (
    "github.com/samber/lo"
    lop "github.com/samber/lo/parallel"
)

Then use one of the helpers below:

names := lo.Uniq[string]([]string{"Samuel", "Marc", "Samuel"})
// []string{"Samuel", "Marc"}

Most of the time, the compiler will be able to infer the type so that you can call: lo.Uniq([]string{...}).

🀠 Spec

GoDoc: https://godoc.org/github.com/samber/lo

Supported helpers for slices:

  • Filter
  • Map
  • FilterMap
  • FlatMap
  • Reduce
  • ForEach
  • Times
  • Uniq
  • UniqBy
  • GroupBy
  • Chunk
  • PartitionBy
  • Flatten
  • Shuffle
  • Reverse
  • Fill
  • Repeat
  • KeyBy
  • Drop
  • DropRight
  • DropWhile
  • DropRightWhile
  • Reject
  • Count
  • CountBy

Supported helpers for maps:

  • Keys
  • Values
  • PickBy
  • PickByKeys
  • PickByValues
  • OmitBy
  • OmitByKeys
  • OmitByValues
  • Entries
  • FromEntries
  • Invert
  • Assign (merge of maps)
  • MapKeys
  • MapValues

Supported math helpers:

  • Range / RangeFrom / RangeWithSteps
  • Clamp
  • SumBy

Supported helpers for strings:

  • Substring
  • RuneLength

Supported helpers for tuples:

  • T2 -> T9
  • Unpack2 -> Unpack9
  • Zip2 -> Zip9
  • Unzip2 -> Unzip9

Supported intersection helpers:

  • Contains
  • ContainsBy
  • Every
  • EveryBy
  • Some
  • SomeBy
  • None
  • NoneBy
  • Intersect
  • Difference
  • Union

Supported search helpers:

  • IndexOf
  • LastIndexOf
  • Find
  • FindIndexOf
  • FindLastIndexOf
  • Min
  • MinBy
  • Max
  • MaxBy
  • Last
  • Nth
  • Sample
  • Samples

Conditional helpers:

  • Ternary (1 line if/else statement)
  • If / ElseIf / Else
  • Switch / Case / Default

Type manipulation helpers:

  • ToPtr
  • ToSlicePtr
  • ToAnySlice
  • FromAnySlice
  • Empty
  • Coalesce

Concurrency helpers:

  • Attempt
  • AttemptWithDelay
  • Debounce
  • Async

Error handling:

  • Must
  • Try
  • TryCatch
  • TryWithErrorValue
  • TryCatchWithErrorValue

Constraints:

  • Clonable

Map

Manipulates a slice of one type and transforms it into a slice of another type:

import "github.com/samber/lo"

lo.Map[int64, string]([]int64{1, 2, 3, 4}, func(x int64, _ int) string {
    return strconv.FormatInt(x, 10)
})
// []string{"1", "2", "3", "4"}

Parallel processing: like lo.Map(), but the mapper function is called in a goroutine. Results are returned in the same order.

import lop "github.com/samber/lo/parallel"

lop.Map[int64, string]([]int64{1, 2, 3, 4}, func(x int64, _ int) string {
    return strconv.FormatInt(x, 10)
})
// []string{"1", "2", "3", "4"}

FlatMap

Manipulates a slice and transforms and flattens it to a slice of another type.

lo.FlatMap[int, string]([]int{0, 1, 2}, func(x int, _ int) []string {
    return []string{
        strconv.FormatInt(x, 10),
        strconv.FormatInt(x, 10),
    }
})
// []string{"0", "0", "1", "1", "2", "2"}

FilterMap

Returns a slice which obtained after both filtering and mapping using the given callback function.

The callback function should return two values: the result of the mapping operation and whether the result element should be included or not.

matching := lo.FilterMap[string, string]([]string{"cpu", "gpu", "mouse", "keyboard"}, func(x string, _ int) (string, bool) {
    if strings.HasSuffix(x, "pu") {
        return "xpu", true
    }
    return "", false
})
// []string{"xpu", "xpu"}

Filter

Iterates over a collection and returns an array of all the elements the predicate function returns true for.

even := lo.Filter[int]([]int{1, 2, 3, 4}, func(x int, _ int) bool {
    return x%2 == 0
})
// []int{2, 4}

Contains

Returns true if an element is present in a collection.

present := lo.Contains[int]([]int{0, 1, 2, 3, 4, 5}, 5)
// true

ContainsBy

Returns true if the predicate function returns true.

present := lo.ContainsBy[int]([]int{0, 1, 2, 3, 4, 5}, func(x int) bool {
    return x == 3
})
// true

Reduce

Reduces a collection to a single value. The value is calculated by accumulating the result of running each element in the collection through an accumulator function. Each successive invocation is supplied with the return value returned by the previous call.

sum := lo.Reduce[int, int]([]int{1, 2, 3, 4}, func(agg int, item int, _ int) int {
    return agg + item
}, 0)
// 10

ForEach

Iterates over elements of a collection and invokes the function over each element.

import "github.com/samber/lo"

lo.ForEach[string]([]string{"hello", "world"}, func(x string, _ int) {
    println(x)
})
// prints "hello\nworld\n"

Parallel processing: like lo.ForEach(), but the callback is called as a goroutine.

import lop "github.com/samber/lo/parallel"

lop.ForEach[string]([]string{"hello", "world"}, func(x string, _ int) {
    println(x)
})
// prints "hello\nworld\n" or "world\nhello\n"

Times

Times invokes the iteratee n times, returning an array of the results of each invocation. The iteratee is invoked with index as argument.

import "github.com/samber/lo"

lo.Times[string](3, func(i int) string {
    return strconv.FormatInt(int64(i), 10)
})
// []string{"0", "1", "2"}

Parallel processing: like lo.Times(), but callback is called in goroutine.

import lop "github.com/samber/lo/parallel"

lop.Times[string](3, func(i int) string {
    return strconv.FormatInt(int64(i), 10)
})
// []string{"0", "1", "2"}

Uniq

Returns a duplicate-free version of an array, in which only the first occurrence of each element is kept. The order of result values is determined by the order they occur in the array.

uniqValues := lo.Uniq[int]([]int{1, 2, 2, 1})
// []int{1, 2}

UniqBy

Returns a duplicate-free version of an array, in which only the first occurrence of each element is kept. The order of result values is determined by the order they occur in the array. It accepts iteratee which is invoked for each element in array to generate the criterion by which uniqueness is computed.

uniqValues := lo.UniqBy[int, int]([]int{0, 1, 2, 3, 4, 5}, func(i int) int {
    return i%3
})
// []int{0, 1, 2}

GroupBy

Returns an object composed of keys generated from the results of running each element of collection through iteratee.

import lo "github.com/samber/lo"

groups := lo.GroupBy[int, int]([]int{0, 1, 2, 3, 4, 5}, func(i int) int {
    return i%3
})
// map[int][]int{0: []int{0, 3}, 1: []int{1, 4}, 2: []int{2, 5}}

Parallel processing: like lo.GroupBy(), but callback is called in goroutine.

import lop "github.com/samber/lo/parallel"

lop.GroupBy[int, int]([]int{0, 1, 2, 3, 4, 5}, func(i int) int {
    return i%3
})
// map[int][]int{0: []int{0, 3}, 1: []int{1, 4}, 2: []int{2, 5}}

Chunk

Returns an array of elements split into groups the length of size. If array can't be split evenly, the final chunk will be the remaining elements.

lo.Chunk[int]([]int{0, 1, 2, 3, 4, 5}, 2)
// [][]int{{0, 1}, {2, 3}, {4, 5}}

lo.Chunk[int]([]int{0, 1, 2, 3, 4, 5, 6}, 2)
// [][]int{{0, 1}, {2, 3}, {4, 5}, {6}}

lo.Chunk[int]([]int{}, 2)
// [][]int{}

lo.Chunk[int]([]int{0}, 2)
// [][]int{{0}}

PartitionBy

Returns an array of elements split into groups. The order of grouped values is determined by the order they occur in collection. The grouping is generated from the results of running each element of collection through iteratee.

import lo "github.com/samber/lo"

partitions := lo.PartitionBy[int, string]([]int{-2, -1, 0, 1, 2, 3, 4, 5}, func(x int) string {
    if x < 0 {
        return "negative"
    } else if x%2 == 0 {
        return "even"
    }
    return "odd"
})
// [][]int{{-2, -1}, {0, 2, 4}, {1, 3, 5}}

Parallel processing: like lo.PartitionBy(), but callback is called in goroutine. Results are returned in the same order.

import lop "github.com/samber/lo/parallel"

partitions := lo.PartitionBy[int, string]([]int{-2, -1, 0, 1, 2, 3, 4, 5}, func(x int) string {
    if x < 0 {
        return "negative"
    } else if x%2 == 0 {
        return "even"
    }
    return "odd"
})
// [][]int{{-2, -1}, {0, 2, 4}, {1, 3, 5}}

Flatten

Returns an array a single level deep.

flat := lo.Flatten[int]([][]int{{0, 1}, {2, 3, 4, 5}})
// []int{0, 1, 2, 3, 4, 5}

Shuffle

Returns an array of shuffled values. Uses the Fisher-Yates shuffle algorithm.

randomOrder := lo.Shuffle[int]([]int{0, 1, 2, 3, 4, 5})
// []int{0, 1, 2, 3, 4, 5}

Reverse

Reverses array so that the first element becomes the last, the second element becomes the second to last, and so on.

reverseOder := lo.Reverse[int]([]int{0, 1, 2, 3, 4, 5})
// []int{5, 4, 3, 2, 1, 0}

Fill

Fills elements of array with initial value.

type foo struct {
    bar string
}

func (f foo) Clone() foo {
    return foo{f.bar}
}

initializedSlice := lo.Fill[foo]([]foo{foo{"a"}, foo{"a"}}, foo{"b"})
// []foo{foo{"b"}, foo{"b"}}

Repeat

Builds a slice with N copies of initial value.

type foo struct {
    bar string
}

func (f foo) Clone() foo {
    return foo{f.bar}
}

slice := lo.Repeat[foo](2, foo{"a"})
// []foo{foo{"a"}, foo{"a"}}

RepeatBy

Builds a slice with values returned by N calls of callback.

slice := lo.RepeatBy[int](0, func (i int) int {
    return math.Pow(i, 2)
})
// []int{}

slice := lo.RepeatBy[int](5, func (i int) int {
    return math.Pow(i, 2)
})
// []int{0, 1, 4, 9, 16}

KeyBy

Transforms a slice or an array of structs to a map based on a pivot callback.

m := lo.KeyBy[int, string]([]string{"a", "aa", "aaa"}, func(str string) int {
    return len(str)
})
// map[int]string{1: "a", 2: "aa", 3: "aaa"}

type Character struct {
    dir  string
    code int
}
characters := []Character{
    {dir: "left", code: 97},
    {dir: "right", code: 100},
}
result := lo.KeyBy[string, Character](characters, func(char Character) string {
    return string(rune(char.code))
})
//map[a:{dir:left code:97} d:{dir:right code:100}]

Drop

Drops n elements from the beginning of a slice or array.

l := lo.Drop[int]([]int{0, 1, 2, 3, 4, 5}, 2)
// []int{2, 3, 4, 5}

DropRight

Drops n elements from the end of a slice or array.

l := lo.DropRight[int]([]int{0, 1, 2, 3, 4, 5}, 2)
// []int{0, 1, 2, 3}

DropWhile

Drop elements from the beginning of a slice or array while the predicate returns true.

l := lo.DropWhile[string]([]string{"a", "aa", "aaa", "aa", "aa"}, func(val string) bool {
    return len(val) <= 2
})
// []string{"aaa", "aa", "aa"}

DropRightWhile

Drop elements from the end of a slice or array while the predicate returns true.

l := lo.DropRightWhile[string]([]string{"a", "aa", "aaa", "aa", "aa"}, func(val string) bool {
    return len(val) <= 2
})
// []string{"a", "aa", "aaa"}

Reject

The opposite of Filter, this method returns the elements of collection that predicate does not return truthy for.

odd := lo.Reject[int]([]int{1, 2, 3, 4}, func(x int, _ int) bool {
    return x%2 == 0
})
// []int{1, 3}

Count

Counts the number of elements in the collection that compare equal to value.

count := lo.Count[int]([]int{1, 5, 1}, 1)
// 2

CountBy

Counts the number of elements in the collection for which predicate is true.

count := lo.CountBy[int]([]int{1, 5, 1}, func(i int) bool {
    return i < 4
})
// 2

Subset

Return part of a slice.

in := []int{0, 1, 2, 3, 4}

sub := lo.Subset(in, 2, 3)
// []int{2, 3, 4}

sub := lo.Subset(in, -4, 3)
// []int{1, 2, 3}

sub := lo.Subset(in, -2, math.MaxUint)
// []int{3, 4}

Replace

Returns a copy of the slice with the first n non-overlapping instances of old replaced by new.

in := []int{0, 1, 0, 1, 2, 3, 0}

slice := lo.Replace(in, 0, 42, 1)
// []int{42, 1, 0, 1, 2, 3, 0}

slice := lo.Replace(in, -1, 42, 1)
// []int{0, 1, 0, 1, 2, 3, 0}

slice := lo.Replace(in, 0, 42, 2)
// []int{42, 1, 42, 1, 2, 3, 0}

slice := lo.Replace(in, 0, 42, -1)
// []int{42, 1, 42, 1, 2, 3, 42}

ReplaceAll

Returns a copy of the slice with all non-overlapping instances of old replaced by new.

in := []int{0, 1, 0, 1, 2, 3, 0}

slice := lo.ReplaceAll(in, 0, 42)
// []int{42, 1, 42, 1, 2, 3, 42}

slice := lo.ReplaceAll(in, -1, 42)
// []int{0, 1, 0, 1, 2, 3, 0}

Keys

Creates an array of the map keys.

keys := lo.Keys[string, int](map[string]int{"foo": 1, "bar": 2})
// []string{"bar", "foo"}

Values

Creates an array of the map values.

values := lo.Values[string, int](map[string]int{"foo": 1, "bar": 2})
// []int{1, 2}

PickBy

Returns same map type filtered by given predicate.

m := lo.PickBy[string, int](map[string]int{"foo": 1, "bar": 2, "baz": 3}, func(key string, value int) bool {
    return value%2 == 1
})
// map[string]int{"foo": 1, "baz": 3}

PickByKeys

Returns same map type filtered by given keys.

m := lo.PickByKeys[string, int](map[string]int{"foo": 1, "bar": 2, "baz": 3}, []string{"foo", "baz"})
// map[string]int{"foo": 1, "baz": 3}

PickByValues

Returns same map type filtered by given values.

m := lo.PickByValues[string, int](map[string]int{"foo": 1, "bar": 2, "baz": 3}, []int{1, 3})
// map[string]int{"foo": 1, "baz": 3}

OmitBy

Returns same map type filtered by given predicate.

m := lo.OmitBy[string, int](map[string]int{"foo": 1, "bar": 2, "baz": 3}, func(key string, value int) bool {
    return value%2 == 1
})
// map[string]int{"bar": 2}

OmitByKeys

Returns same map type filtered by given keys.

m := lo.OmitByKeys[string, int](map[string]int{"foo": 1, "bar": 2, "baz": 3}, []string{"foo", "baz"})
// map[string]int{"bar": 2}

OmitByValues

Returns same map type filtered by given values.

m := lo.OmitByValues[string, int](map[string]int{"foo": 1, "bar": 2, "baz": 3}, []int{1, 3})
// map[string]int{"bar": 2}

Entries

Transforms a map into array of key/value pairs.

entries := lo.Entries[string, int](map[string]int{"foo": 1, "bar": 2})
// []lo.Entry[string, int]{
//     {
//         Key: "foo",
//         Value: 1,
//     },
//     {
//         Key: "bar",
//         Value: 2,
//     },
// }

FromEntries

Transforms an array of key/value pairs into a map.

m := lo.FromEntries[string, int]([]lo.Entry[string, int]{
    {
        Key: "foo",
        Value: 1,
    },
    {
        Key: "bar",
        Value: 2,
    },
})
// map[string]int{"foo": 1, "bar": 2}

Invert

Creates a map composed of the inverted keys and values. If map contains duplicate values, subsequent values overwrite property assignments of previous values.

m1 := lo.Invert[string, int]([map[string]int{"a": 1, "b": 2})
// map[int]string{1: "a", 2: "b"}

m2 := lo.Invert[string, int]([map[string]int{"a": 1, "b": 2, "c": 1})
// map[int]string{1: "c", 2: "b"}

Assign

Merges multiple maps from left to right.

mergedMaps := lo.Assign[string, int](
    map[string]int{"a": 1, "b": 2},
    map[string]int{"b": 3, "c": 4},
)
// map[string]int{"a": 1, "b": 3, "c": 4}

MapKeys

Manipulates a map keys and transforms it to a map of another type.

m2 := lo.MapKeys[int, int, string](map[int]int{1: 1, 2: 2, 3: 3, 4: 4}, func(_ int, v int) string {
    return strconv.FormatInt(int64(v), 10)
})
// map[string]int{"1": 1, "2": 2, "3": 3, "4": 4}

MapValues

Manipulates a map values and transforms it to a map of another type.

m1 := map[int]int64{1: 1, 2: 2, 3: 3}

m2 := lo.MapValues[int, int64, string](m1, func(x int64, _ int) string {
    return strconv.FormatInt(x, 10)
})
// map[int]string{1: "1", 2: "2", 3: "3"}

Range / RangeFrom / RangeWithSteps

Creates an array of numbers (positive and/or negative) progressing from start up to, but not including end.

result := Range(4)
// [0, 1, 2, 3]

result := Range(-4);
// [0, -1, -2, -3]

result := RangeFrom(1, 5);
// [1, 2, 3, 4]

result := RangeFrom[float64](1.0, 5);
// [1.0, 2.0, 3.0, 4.0]

result := RangeWithSteps(0, 20, 5);
// [0, 5, 10, 15]

result := RangeWithSteps[float32](-1.0, -4.0, -1.0);
// [-1.0, -2.0, -3.0]

result := RangeWithSteps(1, 4, -1);
// []

result := Range(0);
// []

Clamp

Clamps number within the inclusive lower and upper bounds.

r1 := lo.Clamp(0, -10, 10)
// 0

r2 := lo.Clamp(-42, -10, 10)
// -10

r3 := lo.Clamp(42, -10, 10)
// 10

SumBy

Summarizes the values in a collection using the given return value from the iteration function. If collection is empty 0 is returned.

strings := []string{"foo", "bar"}
sum := lo.SumBy(strings, func(item string) int {
    return len(item)
})
// 6

Substring

Return part of a string.

sub := lo.Substring("hello", 2, 3)
// "llo"

sub := lo.Substring("hello", -4, 3)
// "ell"

sub := lo.Substring("hello", -2, math.MaxUint)
// "lo"

RuneLength

An alias to utf8.RuneCountInString which returns the number of runes in string.

sub := lo.RuneLength("hellΓ΄")
// 5

sub := len("hellΓ΄")
// 6

T2 -> T9

Creates a tuple from a list of values.

tuple1 := lo.T2[string, int]("x", 1)
// Tuple2[string, int]{A: "x", B: 1}

func example() (string, int) { return "y", 2 }
tuple2 := lo.T2[string, int](example())
// Tuple2[string, int]{A: "y", B: 2}

Unpack2 -> Unpack9

Returns values contained in tuple.

r1, r2 := lo.Unpack2[string, int](lo.Tuple2[string, int]{"a", 1})
// "a", 1

Zip2 -> Zip9

Zip creates a slice of grouped elements, the first of which contains the first elements of the given arrays, the second of which contains the second elements of the given arrays, and so on.

When collections have different size, the Tuple attributes are filled with zero value.

tuples := lo.Zip2[string, int]([]string{"a", "b"}, []int{1, 2})
// []Tuple2[string, int]{{A: "a", B: 1}, {A: "b", B: 2}}

Unzip2 -> Unzip9

Unzip accepts an array of grouped elements and creates an array regrouping the elements to their pre-zip configuration.

a, b := lo.Unzip2[string, int]([]Tuple2[string, int]{{A: "a", B: 1}, {A: "b", B: 2}})
// []string{"a", "b"}
// []int{1, 2}

Every

Returns true if all elements of a subset are contained into a collection or if the subset is empty.

ok := lo.Every[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 2})
// true

ok := lo.Every[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 6})
// false

EveryBy

Returns true if the predicate returns true for all of the elements in the collection or if the collection is empty.

b := EveryBy[int]([]int{1, 2, 3, 4}, func(x int) bool {
    return x < 5
})
// true

Some

Returns true if at least 1 element of a subset is contained into a collection. If the subset is empty Some returns false.

ok := lo.Some[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 2})
// true

ok := lo.Some[int]([]int{0, 1, 2, 3, 4, 5}, []int{-1, 6})
// false

SomeBy

Returns true if the predicate returns true for any of the elements in the collection. If the collection is empty SomeBy returns false.

b := SomeBy[int]([]int{1, 2, 3, 4}, func(x int) bool {
    return x < 3
})
// true

None

Returns true if no element of a subset are contained into a collection or if the subset is empty.

b := None[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 2})
// false
b := None[int]([]int{0, 1, 2, 3, 4, 5}, []int{-1, 6})
// true

NoneBy

Returns true if the predicate returns true for none of the elements in the collection or if the collection is empty.

b := NoneBy[int]([]int{1, 2, 3, 4}, func(x int) bool {
    return x < 0
})
// true

Intersect

Returns the intersection between two collections.

result1 := lo.Intersect[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 2})
// []int{0, 2}

result2 := lo.Intersect[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 6}
// []int{0}

result3 := lo.Intersect[int]([]int{0, 1, 2, 3, 4, 5}, []int{-1, 6})
// []int{}

Difference

Returns the difference between two collections.

  • The first value is the collection of element absent of list2.
  • The second value is the collection of element absent of list1.
left, right := lo.Difference[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 2, 6})
// []int{1, 3, 4, 5}, []int{6}

left, right := lo.Difference[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 1, 2, 3, 4, 5})
// []int{}, []int{}

Union

Returns all distinct elements from both collections. Result will not change the order of elements relatively.

union := lo.Union[int]([]int{0, 1, 2, 3, 4, 5}, []int{0, 2, 10})
// []int{0, 1, 2, 3, 4, 5, 10}

IndexOf

Returns the index at which the first occurrence of a value is found in an array or return -1 if the value cannot be found.

found := lo.IndexOf[int]([]int{0, 1, 2, 1, 2, 3}, 2)
// 2

notFound := lo.IndexOf[int]([]int{0, 1, 2, 1, 2, 3}, 6)
// -1

LastIndex

Returns the index at which the last occurrence of a value is found in an array or return -1 if the value cannot be found.

found := lo.LastIndexOf[int]([]int{0, 1, 2, 1, 2, 3}, 2)
// 4

notFound := lo.LastIndexOf[int]([]int{0, 1, 2, 1, 2, 3}, 6)
// -1

Find

Search an element in a slice based on a predicate. It returns element and true if element was found.

str, ok := lo.Find[string]([]string{"a", "b", "c", "d"}, func(i string) bool {
    return i == "b"
})
// "b", true

str, ok := lo.Find[string]([]string{"foobar"}, func(i string) bool {
    return i == "b"
})
// "", false

FindIndexOf

FindIndexOf searches an element in a slice based on a predicate and returns the index and true. It returns -1 and false if the element is not found.

str, index, ok := lo.FindIndexOf[string]([]string{"a", "b", "a", "b"}, func(i string) bool {
    return i == "b"
})
// "b", 1, true

str, index, ok := lo.FindIndexOf[string]([]string{"foobar"}, func(i string) bool {
    return i == "b"
})
// "", -1, false

FindLastIndexOf

FindLastIndexOf searches an element in a slice based on a predicate and returns the index and true. It returns -1 and false if the element is not found.

str, index, ok := lo.FindLastIndexOf[string]([]string{"a", "b", "a", "b"}, func(i string) bool {
    return i == "b"
})
// "b", 4, true

str, index, ok := lo.FindLastIndexOf[string]([]string{"foobar"}, func(i string) bool {
    return i == "b"
})
// "", -1, false

Min

Search the minimum value of a collection.

min := lo.Min[int]([]int{1, 2, 3})
// 1

min := lo.Min[int]([]int{})
// 0

MinBy

Search the minimum value of a collection using the given comparison function. If several values of the collection are equal to the smallest value, returns the first such value.

min := lo.MinBy[string]([]string{"s1", "string2", "s3"}, func(item string, min string) bool {
    return len(item) < len(min)
})
// "s1"

min := lo.MinBy[string]([]string{}, func(item string, min string) bool {
    return len(item) < len(min)
})
// ""

Max

Search the maximum value of a collection.

max := lo.Max[int]([]int{1, 2, 3})
// 3

max := lo.Max[int]([]int{})
// 0

MaxBy

Search the maximum value of a collection using the given comparison function. If several values of the collection are equal to the greatest value, returns the first such value.

max := lo.MaxBy[string]([]string{"string1", "s2", "string3"}, func(item string, max string) bool {
    return len(item) > len(max)
})
// "string1"

max := lo.MaxBy[string]([]string{}, func(item string, max string) bool {
    return len(item) > len(max)
})
// ""

Last

Returns the last element of a collection or error if empty.

last, err := lo.Last[int]([]int{1, 2, 3})
// 3

Nth

Returns the element at index nth of collection. If nth is negative, the nth element from the end is returned. An error is returned when nth is out of slice bounds.

nth, err := lo.Nth[int]([]int{0, 1, 2, 3}, 2)
// 2

nth, err := lo.Nth[int]([]int{0, 1, 2, 3}, -2)
// 2

Sample

Returns a random item from collection.

lo.Sample[string]([]string{"a", "b", "c"})
// a random string from []string{"a", "b", "c"}

lo.Sample[string]([]string{})
// ""

Samples

Returns N random unique items from collection.

lo.Samples[string]([]string{"a", "b", "c"}, 3)
// []string{"a", "b", "c"} in random order

Ternary

A 1 line if/else statement.

result := lo.Ternary[string](true, "a", "b")
// "a"

result := lo.Ternary[string](false, "a", "b")
// "b"

If / ElseIf / Else

result := lo.If[int](true, 1).
    ElseIf(false, 2).
    Else(3)
// 1

result := lo.If[int](false, 1).
    ElseIf(true, 2).
    Else(3)
// 2

result := lo.If[int](false, 1).
    ElseIf(false, 2).
    Else(3)
// 3

Using callbacks:

result := lo.IfF[int](true, func () int {
        return 1
    }).
    ElseIfF(false, func () int {
        return 2
    }).
    ElseF(func () int {
        return 3
    })
// 1

Mixed:

result := lo.IfF[int](true, func () int {
        return 1
    }).
    Else(42)
// 1

Switch / Case / Default

result := lo.Switch[int, string](1).
    Case(1, "1").
    Case(2, "2").
    Default("3")
// "1"

result := lo.Switch[int, string](2).
    Case(1, "1").
    Case(2, "2").
    Default("3")
// "2"

result := lo.Switch[int, string](42).
    Case(1, "1").
    Case(2, "2").
    Default("3")
// "3"

Using callbacks:

result := lo.Switch[int, string](1).
    CaseF(1, func() string {
        return "1"
    }).
    CaseF(2, func() string {
        return "2"
    }).
    DefaultF(func() string {
        return "3"
    })
// "1"

Mixed:

result := lo.Switch[int, string](1).
    CaseF(1, func() string {
        return "1"
    }).
    Default("42")
// "1"

ToPtr

Returns a pointer copy of value.

ptr := lo.ToPtr[string]("hello world")
// *string{"hello world"}

ToSlicePtr

Returns a slice of pointer copy of value.

ptr := lo.ToSlicePtr[string]([]string{"hello", "world"})
// []*string{"hello", "world"}

ToAnySlice

Returns a slice with all elements mapped to any type.

elements := lo.ToAnySlice[int]([]int{1, 5, 1})
// []any{1, 5, 1}

FromAnySlice

Returns an any slice with all elements mapped to a type. Returns false in case of type conversion failure.

elements, ok := lo.FromAnySlice[string]([]any{"foobar", 42})
// []string{}, false

elements, ok := lo.FromAnySlice[string]([]any{"foobar", "42"})
// []string{"foobar", "42"}, true

Empty

Returns an empty value.

lo.Empty[int]()
// 0
lo.Empty[string]()
// ""
lo.Empty[bool]()
// false

Coalesce

Returns the first non-empty arguments. Arguments must be comparable.

result, ok := lo.Coalesce(0, 1, 2, 3)
// 1 true

result, ok := lo.Coalesce("")
// "" false

var nilStr *string
str := "foobar"
result, ok := lo.Coalesce[*string](nil, nilStr, &str)
// &"foobar" true

Attempt

Invokes a function N times until it returns valid output. Returning either the caught error or nil. When first argument is less than 1, the function runs until a sucessfull response is returned.

iter, err := lo.Attempt(42, func(i int) error {
    if i == 5 {
        return nil
    }

    return fmt.Errorf("failed")
})
// 6
// nil

iter, err := lo.Attempt(2, func(i int) error {
    if i == 5 {
        return nil
    }

    return fmt.Errorf("failed")
})
// 2
// error "failed"

iter, err := lo.Attempt(0, func(i int) error {
    if i < 42 {
        return fmt.Errorf("failed")
    }

    return nil
})
// 43
// nil

For more advanced retry strategies (delay, exponential backoff...), please take a look on cenkalti/backoff.

AttemptWithDelay

Invokes a function N times until it returns valid output, with a pause betwwen each call. Returning either the caught error or nil.

When first argument is less than 1, the function runs until a sucessfull response is returned.

iter, duration, err := lo.AttemptWithDelay(5, 2*time.Second, func(i int, duration time.Duration) error {
    if i == 2 {
        return nil
    }

    return fmt.Errorf("failed")
})
// 3
// ~ 4 seconds
// nil

For more advanced retry strategies (delay, exponential backoff...), please take a look on cenkalti/backoff.

Debounce

NewDebounce creates a debounced instance that delays invoking functions given until after wait milliseconds have elapsed, until cancel is called.

f := func() {
    println("Called once after 100ms when debounce stopped invoking!")
}

debounce, cancel := lo.NewDebounce(100 * time.Millisecond, f)
for j := 0; j < 10; j++ {
    debounce()
}

time.Sleep(1 * time.Second)
cancel()

Synchronize

Wraps the underlying callback in a mutex. It receives an optional mutex.

s := lo.Synchronize()

for i := 0; i < 10; i++ {
    go s.Do(func () {
        println("will be called sequentially")
    })
}

It is equivalent to:

mu := sync.Mutex{}

func foobar() {
    mu.Lock()
    defer mu.Unlock()

    // ...
}

Async

Executes a function in a goroutine and returns the result in a channel.

ch := lo.Async(func() error { time.Sleep(10 * time.Second); return nil })
// chan error (nil)

Async{0->6}

Executes a function in a goroutine and returns the result in a channel. For function with multiple return values, the results will be returned as a tuple inside the channel. For function without return, struct{} will be returned in the channel.

ch := lo.Async0(func() { time.Sleep(10 * time.Second) })
// chan struct{}

ch := lo.Async1(func() int {
  time.Sleep(10 * time.Second);
  return 42
})
// chan int (42)

ch := lo.Async2(func() (int, string) {
  time.Sleep(10 * time.Second);
  return 42, "Hello"
})
// chan lo.Tuple2[int, string] ({42, "Hello"})

Must

Wraps a function call to panics if second argument is error or false, returns the value otherwise.

val := lo.Must(time.Parse("2006-01-02", "2022-01-15"))
// 2022-01-15

val := lo.Must(time.Parse("2006-01-02", "bad-value"))
// panics

Must{0->6}

Must* has the same behavior than Must, but returns multiple values.

func example0() (error)
func example1() (int, error)
func example2() (int, string, error)
func example3() (int, string, time.Date, error)
func example4() (int, string, time.Date, bool, error)
func example5() (int, string, time.Date, bool, float64, error)
func example6() (int, string, time.Date, bool, float64, byte, error)

lo.Must0(example0())
val1 := lo.Must1(example1())    // alias to Must
val1, val2 := lo.Must2(example2())
val1, val2, val3 := lo.Must3(example3())
val1, val2, val3, val4 := lo.Must4(example4())
val1, val2, val3, val4, val5 := lo.Must5(example5())
val1, val2, val3, val4, val5, val6 := lo.Must6(example6())

You can wrap functions like func (...) (..., ok bool).

// math.Signbit(float64) bool
lo.Must0(math.Signbit(v))

// bytes.Cut([]byte,[]byte) ([]byte, []byte, bool)
before, after := lo.Must2(bytes.Cut(s, sep))

Try

Calls the function and return false in case of error and on panic.

ok := lo.Try(func() error {
    panic("error")
    return nil
})
// false

ok := lo.Try(func() error {
    return nil
})
// true

ok := lo.Try(func() error {
    return fmt.Errorf("error")
})
// false

Try{0->6}

The same behavior than Try, but callback returns 2 variables.

ok := lo.Try2(func() (string, error) {
    panic("error")
    return "", nil
})
// false

TryWithErrorValue

The same behavior than Try, but also returns value passed to panic.

err, ok := lo.TryWithErrorValue(func() error {
    panic("error")
    return nil
})
// "error", false

TryCatch

The same behavior than Try, but calls the catch function in case of error.

caught := false

ok := lo.TryCatch(func() error {
    panic("error")
    return nil
}, func() {
    caught = true
})
// false
// caught == true

TryCatchWithErrorValue

The same behavior than TryWithErrorValue, but calls the catch function in case of error.

caught := false

ok := lo.TryCatchWithErrorValue(func() error {
    panic("error")
    return nil
}, func(val any) {
    caught = val == "error"
})
// false
// caught == true

πŸ›© Benchmark

We executed a simple benchmark with the a dead-simple lo.Map loop:

See the full implementation [here](./benchmark_test.go).

_ = lo.Map[int64](arr, func(x int64, i int) string {
    return strconv.FormatInt(x, 10)
})

Result:

Here is a comparison between lo.Map, lop.Map, go-funk library and a simple Go for loop.

$ go test -benchmem -bench ./...
goos: linux
goarch: amd64
pkg: github.com/samber/lo
cpu: Intel(R) Core(TM) i5-7267U CPU @ 3.10GHz
cpu: Intel(R) Core(TM) i7 CPU         920  @ 2.67GHz
BenchmarkMap/lo.Map-8                  8     132728237 ns/op    39998945 B/op    1000002 allocs/op
BenchmarkMap/lop.Map-8                 2     503947830 ns/op    119999956 B/op   3000007 allocs/op
BenchmarkMap/reflect-8                 2     826400560 ns/op    170326512 B/op   4000042 allocs/op
BenchmarkMap/for-8                     9     126252954 ns/op    39998674 B/op    1000001 allocs/op
PASS
ok      github.com/samber/lo    6.657s
  • lo.Map is way faster (x7) than go-funk, a relection-based Map implementation.
  • lo.Map have the same allocation profile than for.
  • lo.Map is 4% slower than for.
  • lop.Map is slower than lo.Map because it implies more memory allocation and locks. lop.Map will be usefull for long-running callbacks, such as i/o bound processing.
  • for beats other implementations for memory and CPU.

🀝 Contributing

Don't hesitate ;)

Install go 1.18

make go1.18beta1

If your OS currently not default to Go 1.18, replace BIN=go by BIN=go1.18beta1 in the Makefile.

With Docker

docker-compose run --rm dev

Without Docker

# Install some dev dependencies
make tools

# Run tests
make test
# or
make watch-test

πŸ‘€ Authors

  • Samuel Berthe

πŸ’« Show your support

Give a ⭐️ if this project helped you!

support us

πŸ“ License

Copyright Β© 2022 Samuel Berthe.

This project is [MIT](./LICENSE) licensed.


*Note that all licence references and agreements mentioned in the lo README section above are relevant to that project's source code only.