evoli alternatives and similar packages
Based on the "Machine Learning" category.
Alternatively, view evoli alternatives based on common mentions on social networks and blogs.
-
Gorgonia
Gorgonia is a library that helps facilitate machine learning in Go. -
m2cgen
Transform ML models into a native code (Java, C, Python, Go, JavaScript, Visual Basic, C#, R, PowerShell, PHP, Dart, Haskell, Ruby, F#, Rust) with zero dependencies -
gosseract
Go package for OCR (Optical Character Recognition), by using Tesseract C++ library -
gago
:four_leaf_clover: Evolutionary optimization library for Go (genetic algorithm, partical swarm optimization, differential evolution) -
ocrserver
A simple OCR API server, seriously easy to be deployed by Docker, on Heroku as well -
onnx-go
onnx-go gives the ability to import a pre-trained neural network within Go without being linked to a framework or library. -
shield
Bayesian text classifier with flexible tokenizers and storage backends for Go -
neat
Plug-and-play, parallel Go framework for NeuroEvolution of Augmenting Topologies (NEAT). -
go-featureprocessing
🔥 Fast, simple sklearn-like feature processing for Go -
neural-go
A multilayer perceptron network implemented in Go, with training via backpropagation. -
go-cluster
k-modes and k-prototypes clustering algorithms implementation in Go
Static code analysis for 29 languages.
Do you think we are missing an alternative of evoli or a related project?
Popular Comparisons
README
evoli
Genetic Algorithm and Particle Swarm Optimization written in Go
Example
Problem
Given f(x,y) = cos(x^2 * y^2) * 1/(x^2 * y^2 + 1)
Find (x,y)
such as f(x,y)
reaches its maximum
Answer f(0,0) = 1
Particle Swarm Optimization
package main
import (
"fmt"
"math"
"math/rand"
"github.com/khezen/evoli"
)
// 3d cosine that gets smaller as you move away from 0,0
func f(x, y float64) float64 {
d := x*x + y*y
return math.Cos(d) * (1 / (d/10 + 1))
}
type FIndividual struct {
v []float64
x []float64
fitness float64
}
func (i *FIndividual) Equal(other evoli.Individual) bool {
return i == other
}
func (i *FIndividual) Fitness() float64 {
return i.fitness
}
func (i *FIndividual) SetFitness(newFitness float64) {
i.fitness = newFitness
}
type FPositioner struct {
}
func (p *FPositioner) Position(indiv, pBest, gBest evoli.Individual, c1, c2 float64) (evoli.Individual, error) {
fIndiv, ok1 := indiv.(*FIndividual)
fPBest, ok2 := pBest.(*FIndividual)
fGBest, ok3 := gBest.(*FIndividual)
if !ok1 || !ok2 || !ok3 {
return nil, fmt.Errorf("invalid individual type")
}
newIndiv := FIndividual{
v: make([]float64, len(fIndiv.v)),
x: make([]float64, len(fIndiv.v)),
}
w := 0.9
for d := range fIndiv.v {
rp := rand.Float64()
rg := rand.Float64()
newIndiv.v[d] = w*fIndiv.v[d] +
c1*rp*(fPBest.x[d]-fIndiv.x[d]) +
c2*rg*(fGBest.x[d]-fIndiv.x[d])
newIndiv.x[d] = fIndiv.x[d] + newIndiv.v[d]
}
return &newIndiv, nil
}
type FEvaluater struct {
}
func (e *FEvaluater) Evaluate(indiv evoli.Individual) (Fitness float64, err error) {
fIndiv, ok := indiv.(*FIndividual)
if !ok {
return 0, fmt.Errorf("invalid individual type")
}
return f(fIndiv.x[0], fIndiv.x[1]), nil
}
func main() {
pop := evoli.NewPopulation(50)
for i := 0; i < pop.Cap(); i++ {
x := rand.Float64()*20 - 10
y := rand.Float64()*20 - 10
vx := rand.Float64()*20 - 10
vy := rand.Float64()*20 - 10
pop.Add(&FIndividual{
x: []float64{x, y},
v: []float64{vx, vy},
})
}
positioner := &FPositioner{}
evaluator := &FEvaluater{}
sw := evoli.NewSwarm(pop, positioner, .2, .2, evaluator)
for i := 0; i < 100; i++ {
err := sw.Next()
if err != nil {
panic(err)
}
}
// evaluate the latest population
for _, v := range sw.Population().Slice() {
f, err := evaluator.Evaluate(v)
if err != nil {
panic(err)
}
v.SetFitness(f)
}
fmt.Printf("Max Value: %.2f\n", sw.Alpha().Fitness())
}
Max Value: 1.00
Gentic Algorithm
package main
import (
"fmt"
"math"
"math/rand"
"github.com/khezen/evoli"
)
// 3d cosine that gets smaller as you move away from 0,0
func h(x, y float64) float64 {
d := x*x + y*y
return math.Cos(d) * (1 / (d/10 + 1))
}
type HIndividual struct {
v []float64
x []float64
fitness float64
}
func (i *HIndividual) Equal(other evoli.Individual) bool {
return i == other
}
func (i *HIndividual) Fitness() float64 {
return i.fitness
}
func (i *HIndividual) SetFitness(newFitness float64) {
i.fitness = newFitness
}
type HMutater struct {
}
func (m HMutater) Mutate(indiv evoli.Individual) (evoli.Individual, error) {
x := rand.Float64()*20 - 10
y := rand.Float64()*20 - 10
vx := rand.Float64()*20 - 10
vy := rand.Float64()*20 - 10
return &FIndividual{
x: []float64{x, y},
v: []float64{vx, vy},
}, nil
}
type HCrosser struct {
}
func (h HCrosser) Cross(indiv1, indiv2 evoli.Individual) (evoli.Individual, error) {
fIndiv1, _ := indiv1.(*FIndividual)
fIndiv2, _ := indiv2.(*FIndividual)
return &FIndividual{
x: []float64{(fIndiv1.x[0] + fIndiv2.x[0]) / 2, (fIndiv1.x[1] + fIndiv2.x[1]) / 2},
v: []float64{(fIndiv1.v[0] + fIndiv2.v[0]) / 2, (fIndiv1.v[1] + fIndiv2.v[1]) / 2},
}, nil
}
type HEvaluater struct {
}
func (e HEvaluater) Evaluate(indiv evoli.Individual) (Fitness float64, err error) {
fIndiv, ok := indiv.(*FIndividual)
if !ok {
return 0, fmt.Errorf("invalid individual type")
}
return f(fIndiv.x[0], fIndiv.x[1]), nil
}
func main() {
pop := evoli.NewPopulation(50)
for i := 0; i < pop.Cap(); i++ {
x := rand.Float64()*20 - 10
y := rand.Float64()*20 - 10
vx := rand.Float64()*20 - 10
vy := rand.Float64()*20 - 10
pop.Add(&FIndividual{
x: []float64{x, y},
v: []float64{vx, vy},
})
}
crosser := HCrosser{}
mutater := HMutater{}
evaluator := HEvaluater{}
mutationProbability := .02
selecter := evoli.NewTruncationSelecter()
survivorSize := 30
ga := evoli.NewGenetic(pop, selecter, survivorSize, crosser, mutater, mutationProbability, evaluator)
for i := 0; i < 100; i++ {
err := ga.Next()
if err != nil {
panic(err)
}
}
// evaluate the latest population
for _, v := range ga.Population().Slice() {
f, err := evaluator.Evaluate(v)
if err != nil {
panic(err)
}
v.SetFitness(f)
}
fmt.Printf("Max Value: %.2f\n", ga.Alpha().Fitness())
}
Max Value: 1.00
Issues
If you have any problems or questions, please ask for help through a GitHub issue.
Contributions
Help is always welcome! For example, documentation (like the text you are reading now) can always use improvement. There's always code that can be improved. If you ever see something you think should be fixed, you should own it. If you have no idea what to start on, you can browse the issues labeled with help wanted.
As a potential contributor, your changes and ideas are welcome at any hour of the day or night, weekdays, weekends, and holidays. Please do not ever hesitate to ask a question or send a pull request.