avro alternatives and similar packages
Based on the "Database" category.
Alternatively, view avro alternatives based on common mentions on social networks and blogs.
-
Milvus
A cloud-native vector database, storage for next generation AI applications -
cockroach
CockroachDB - the open source, cloud-native distributed SQL database. -
tidb
TiDB is an open-source, cloud-native, distributed, MySQL-Compatible database for elastic scale and real-time analytics. Try AI-powered Chat2Query free at : https://tidbcloud.com/free-trial -
vitess
Vitess is a database clustering system for horizontal scaling of MySQL. -
TinyGo
Go compiler for small places. Microcontrollers, WebAssembly (WASM/WASI), and command-line tools. Based on LLVM. -
groupcache
groupcache is a caching and cache-filling library, intended as a replacement for memcached in many cases. -
VictoriaMetrics
VictoriaMetrics: fast, cost-effective monitoring solution and time series database -
immudb
immudb - immutable database based on zero trust, SQL and Key-Value, tamperproof, data change history -
go-cache
An in-memory key:value store/cache (similar to Memcached) library for Go, suitable for single-machine applications. -
buntdb
BuntDB is an embeddable, in-memory key/value database for Go with custom indexing and geospatial support -
pREST
PostgreSQL ➕ REST, low-code, simplify and accelerate development, ⚡ instant, realtime, high-performance on any Postgres application, existing or new -
rosedb
🚀 A high performance NoSQL database based on bitcask, supports string, list, hash, set, and sorted set. -
xo
Command line tool to generate idiomatic Go code for SQL databases supporting PostgreSQL, MySQL, SQLite, Oracle, and Microsoft SQL Server -
tiedot
A rudimentary implementation of a basic document (NoSQL) database in Go -
nutsdb
A simple, fast, embeddable, persistent key/value store written in pure Go. It supports fully serializable transactions and many data structures such as list, set, sorted set. -
cache2go
Concurrency-safe Go caching library with expiration capabilities and access counters -
GCache
An in-memory cache library for golang. It supports multiple eviction policies: LRU, LFU, ARC -
fastcache
Fast thread-safe inmemory cache for big number of entries in Go. Minimizes GC overhead -
gocraft/dbr (database records)
Additions to Go's database/sql for super fast performance and convenience. -
CovenantSQL
A decentralized, trusted, high performance, SQL database with blockchain features
Clean code begins in your IDE with SonarLint
Do you think we are missing an alternative of avro or a related project?
Popular Comparisons
README
avro
The purpose of this package is to facilitate use of AVRO with go
strong typing.
Features
github.com/khezen/avro
github.com/khezen/avro/sqlavro
- Discover SQL tables
- Convert SQL tables to AVRO schemas
- Query records from SQL into AVRO or CSV binary
github.com/khezen/avro/redshiftavro
What is AVRO
Apache AVRO is a data serialization system which relies on JSON schemas.
It provides:
- Rich data structures
- A compact, fast, binary data format
- A container file, to store persistent data
- Remote procedure call (RPC)
AVRO binary encoded data comes together with its schema and therefore is fully self-describing.
When AVRO data is read, the schema used when writing it is always present. This permits each datum to be written with no per-value overheads, making serialization both fast and small.
When AVRO data is stored in a file, its schema is stored with it, so that files may be processed later by any program. If the program reading the data expects a different schema this can be easily resolved, since both schemas are present.
Examples
Schema Marshal/Unmarshal
package main
import (
"encoding/json"
"fmt"
"github.com/khezen/avro"
)
func main() {
schemaBytes := []byte(
`{
"type": "record",
"namespace": "test",
"name": "LongList",
"aliases": [
"LinkedLongs"
],
"doc": "linked list of 64 bits integers",
"fields": [
{
"name": "value",
"type": "long"
},
{
"name": "next",
"type": [
"null",
"LongList"
]
}
]
}`,
)
// Unmarshal JSON bytes to Schema interface
var anySchema avro.AnySchema
err := json.Unmarshal(schemaBytes, &anySchema)
if err != nil {
panic(err)
}
schema := anySchema.Schema()
// Marshal Schema interface to JSON bytes
schemaBytes, err = json.Marshal(schema)
if err != nil {
panic(err)
}
fmt.Println(string(schemaBytes))
}
{
"type": "record",
"namespace": "test",
"name": "LongList",
"aliases": [
"LinkedLongs"
],
"doc": "linked list of 64 bits integers",
"fields": [
{
"name": "value",
"type": "long"
},
{
"name": "next",
"type": [
"null",
"LongList"
]
}
]
}
Convert SQL Table to AVRO Schema
package main
import (
"database/sql"
"encoding/json"
"fmt"
"github.com/khezen/avro/sqlavro"
)
func main() {
db, err := sql.Open("mysql", "[email protected]/blog")
if err != nil {
panic(err)
}
defer db.Close()
_, err = db.Exec(
`CREATE TABLE posts(
ID INT NOT NULL,
title VARCHAR(128) NOT NULL,
body LONGBLOB NOT NULL,
content_type VARCHAR(128) DEFAULT 'text/markdown; charset=UTF-8',
post_date DATETIME NOT NULL,
update_date DATETIME,
reading_time_minutes DECIMAL(3,1),
PRIMARY KEY(ID)
)`,
)
if err != nil {
panic(err)
}
schemas, err := sqlavro.SQLDatabase2AVRO(db, "blog")
if err != nil {
panic(err)
}
schemasBytes, err := json.Marshal(schemas)
if err != nil {
panic(err)
}
fmt.Println(string(schemasBytes))
}
[
{
"type": "record",
"namespace": "blog",
"name": "posts",
"fields": [
{
"name": "ID",
"type": "int"
},
{
"name": "title",
"type": "string"
},
{
"name": "body",
"type": "bytes"
},
{
"name": "content_type",
"type": [
"string",
"null"
],
"default": "text/markdown; charset=UTF-8"
},
{
"name": "post_date",
"type": {
"type": "int",
"doc":"datetime",
"logicalType": "timestamp"
}
},
{
"name": "update_date",
"type": [
"null",
{
"type": "int",
"doc":"datetime",
"logicalType": "timestamp"
}
]
},
{
"name": "reading_time_minutes",
"type": [
"null",
{
"type": "bytes",
"logicalType": "decimal",
"precision": 3,
"scale": 1
}
]
}
]
}
]
Query records from SQL into AVRO or CSV binary
package main
import (
"database/sql"
"fmt"
"io/ioutil"
"time"
"github.com/khezen/avro"
"github.com/khezen/avro/sqlavro"
)
func main() {
db, err := sql.Open("mysql", "[email protected]/blog")
if err != nil {
panic(err)
}
defer db.Close()
_, err = db.Exec(
`CREATE TABLE posts(
ID INT NOT NULL,
title VARCHAR(128) NOT NULL,
body LONGBLOB NOT NULL,
content_type VARCHAR(128) DEFAULT 'text/markdown; charset=UTF-8',
post_date DATETIME NOT NULL,
update_date DATETIME,
reading_time_minutes DECIMAL(3,1),
PRIMARY KEY(ID)
)`,
)
if err != nil {
panic(err)
}
_, err = db.Exec(
// statement
`INSERT INTO posts(ID,title,body,content_type,post_date,update_date,reading_time_minutes)
VALUES (?,?,?,?,?,?,?)`,
// values
42,
"lorem ispum",
[]byte(`Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.`),
"text/markdown; charset=UTF-8",
"2009-04-10 00:00:00",
"2009-04-10 00:00:00",
"4.2",
)
if err != nil {
panic(err)
}
schema, err := sqlavro.SQLTable2AVRO(db, "blog", "posts")
if err != nil {
panic(err)
}
limit := 1000
order := avro.Ascending
from, err := time.Parse("2006-02-01 15:04:05", "2009-04-10 00:00:00")
if err != nil {
panic(err)
}
avroBytes, updatedCriteria, err := sqlavro.Query(sqlavro.QueryConfig{
DB: db,
DBName: "blog",
Schema: schema,
Limit: limit,
Criteria: []sqlavro.Criterion{
*sqlavro.NewCriterionDateTime("post_date", &from, order),
},
Output: "avro",
})
if err != nil {
panic(err)
}
err = ioutil.WriteFile("/tmp/blog_posts.avro", avroBytes, 0644)
if err != nil {
panic(err)
}
fmt.Println(updatedCriteria)
}
Notes
- When record fields contains aliases, the first alias is used in the query instead of the field name.
Types
Avro | Go | SQL |
---|---|---|
null |
nil |
NULL |
bytes |
[]byte |
BLOB ,MEDIUMBLOB ,LONGBLOB |
fixed |
[]byte |
CHAR ,NCHAR |
string ,enum |
string |
VARCHAR , NVARCHAR ,TEXT ,TINYTEXT ,MEDIUMTEXT ,LONGTEXT ,ENUM ,SET |
float |
float32 |
FLOAT |
double |
float64 |
DOUBLE |
long |
int64 |
BIGINT |
int |
int32 |
TINYINT ,SMALLINT ,INT ,YEAR |
decimal |
*big.Rat |
DECIMAL |
time |
int32 |
TIME |
timestamp |
int32 |
TIMESTAMP ,DATETIME |
date |
time.Time |
DATE |
array |
[]interface{} |
N/A |
map ,record |
map[string]interface{} |
N/A |
union |
see below | any type nullable |
Because of encoding rules for Avro unions, when an union's value is
null
, a simple Go nil
is returned. However when an union's value
is non-nil
, a Go map[string]interface{}
with a single key is
returned for the union. The map's single key is the Avro type name and
its value is the datum's value.
Produce Redshift create statement from AVRO schema
package main
import (
"encoding/json"
"fmt"
"github.com/khezen/avro"
"github.com/khezen/avro/redshiftavro"
)
func main() {
schemaBytes := []byte(`
{
"type": "record",
"namespace": "blog",
"name": "posts",
"fields": [
{
"name": "ID",
"type": "int"
},
{
"name": "title",
"type": "string"
},
{
"name": "body",
"type": "bytes"
},
{
"name": "content_type",
"type": [
"string",
"null"
],
"default": "text/markdown; charset=UTF-8"
},
{
"name": "post_date",
"type": {
"type": "int",
"doc":"datetime",
"logicalType": "timestamp"
}
},
{
"name": "update_date",
"type": [
"null",
{
"type": "int",
"doc":"datetime",
"logicalType": "timestamp"
}
]
},
{
"name": "reading_time_minutes",
"type": [
"null",
{
"type": "bytes",
"logicalType": "decimal",
"precision": 3,
"scale": 1
}
]
}
]
}`)
var anySchema avro.AnySchema
err := json.Unmarshal(schemaBytes, &anySchema)
if err != nil {
panic(err)
}
schema := anySchema.Schema().(*avro.RecordSchema)
cfg := redshiftavro.CreateConfig{
Schema: *schema,
SortKeys: []string{"post_date", "title"},
IfNotExists: true,
}
statement, err := redshiftavro.CreateTableStatement(cfg)
if err != nil {
panic(err)
}
fmt.Println(statement)
}
CREATE TABLE IF NOT EXISTS posts(
ID INTEGER ENCODE LZO NOT NULL,
title VARCHAR(65535) ENCODE RAW NOT NULL,
body VARCHAR(65535) ENCODE ZSTD NOT NULL,
content_type VARCHAR(65535) ENCODE ZSTD NULL,
post_date TIMESTAMP WITHOUT TIME ZONE ENCODE RAW NOT NULL,
update_date TIMESTAMP WITHOUT TIME ZONE ENCODE LZO NULL,
reading_time_minutes DECIMAL(3,1) ENCODE RAW NULL
)
SORTKEY(
post_date,
title
)
Issues
If you have any problems or questions, please ask for help through a GitHub issue.
Contributions
Help is always welcome! For example, documentation (like the text you are reading now) can always use improvement. There's always code that can be improved. If you ever see something you think should be fixed, you should own it. If you have no idea what to start on, you can browse the issues labeled with help wanted.
As a potential contributor, your changes and ideas are welcome at any hour of the day or night, weekdays, weekends, and holidays. Please do not ever hesitate to ask a question or send a pull request.